ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Depth Search in ResNets

107   0   0.0 ( 0 )
 نشر من قبل Javier Antor\\'an
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

One-shot neural architecture search allows joint learning of weights and network architecture, reducing computational cost. We limit our search space to the depth of residual networks and formulate an analytically tractable variational objective that allows for obtaining an unbiased approximate posterior over depths in one-shot. We propose a heuristic to prune our networks based on this distribution. We compare our proposed method against manual search over network depths on the MNIST, Fashion-MNIST, SVHN datasets. We find that pruned networks do not incur a loss in predictive performance, obtaining accuracies competitive with unpruned networks. Marginalising over depth allows us to obtain better-calibrated test-time uncertainty estimates than regular networks, in a single forward pass.

قيم البحث

اقرأ أيضاً

In this paper, we prove that depth with nonlinearity creates no bad local minima in a type of arbitrarily deep ResNets with arbitrary nonlinear activation functions, in the sense that the values of all local minima are no worse than the global minimu m value of corresponding classical machine-learning models, and are guaranteed to further improve via residual representations. As a result, this paper provides an affirmative answer to an open question stated in a paper in the conference on Neural Information Processing Systems 2018. This paper advances the optimization theory of deep learning only for ResNets and not for other network architectures.
We consider the problem of online learning in the presence of sudden distribution shifts as frequently encountered in applications such as autonomous navigation. Distribution shifts require constant performance monitoring and re-training. They may al so be hard to detect and can lead to a slow but steady degradation in model performance. To address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion. The approach uses beam search over multiple change point hypotheses to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes, making them unsuitable for applications where computational resources are limited. To solve this, we perform probabilistic reasoning over the depth of neural networks. Different depths correspond to subnetworks which share weights and whose predictions are combined via marginalisation, yielding model uncertainty. By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass. We validate our approach on real-world regression and image classification tasks. Our approach provides uncertainty calibration, robustness to dataset shift, and accuracies competitive with more computationally expensive baselines.
We develop a generalisation of disentanglement in VAEs---decomposition of the latent representation---characterising it as the fulfilment of two factors: a) the latent encodings of the data having an appropriate level of overlap, and b) the aggregate encoding of the data conforming to a desired structure, represented through the prior. Decomposition permits disentanglement, i.e. explicit independence between latents, as a special case, but also allows for a much richer class of properties to be imposed on the learnt representation, such as sparsity, clustering, independent subspaces, or even intricate hierarchical dependency relationships. We show that the $beta$-VAE varies from the standard VAE predominantly in its control of latent overlap and that for the standard choice of an isotropic Gaussian prior, its objective is invariant to rotations of the latent representation. Viewed from the decomposition perspective, breaking this invariance with simple manipulations of the prior can yield better disentanglement with little or no detriment to reconstructions. We further demonstrate how other choices of prior can assist in producing different decompositions and introduce an alternative training objective that allows the control of both decomposition factors in a principled manner.
Variational Optimization forms a differentiable upper bound on an objective. We show that approaches such as Natural Evolution Strategies and Gaussian Perturbation, are special cases of Variational Optimization in which the expectations are approxima ted by Gaussian sampling. These approaches are of particular interest because they are parallelizable. We calculate the approximate bias and variance of the corresponding gradient estimators and demonstrate that using antithetic sampling or a baseline is crucial to mitigate their problems. We contrast these methods with an alternative parallelizable method, namely Directional Derivatives. We conclude that, for differentiable objectives, using Directional Derivatives is preferable to using Variational Optimization to perform parallel Stochastic Gradient Descent.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا