ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Mobile Charge Carriers in Semiconducting Carbon Nanotube Networks by Charge Modulation Spectroscopy

158   0   0.0 ( 0 )
 نشر من قبل Jana Zaumseil
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solution-processed networks of semiconducting, single-walled carbon nanotubes (SWCNTs) have attracted considerable attention as materials for next-generation electronic devices and circuits. However, the impact of the SWCNT network composition on charge transport on a microscopic level remains an open and complex question. Here, we use charge-modulated absorption and photoluminescence spectroscopy to probe exclusively the mobile charge carriers in monochiral (6,5) and mixed SWCNT network field-effect transistors. Ground state bleaching and charge-induced trion absorption features, as well as exciton quenching are observed depending on applied voltage and modulation frequency. Through correlation of the modulated mobile carrier density and the optical response of the nanotubes, we find that charge transport in mixed SWCNT networks depends strongly on the diameter and thus bandgap of the individual species. Mobile charges are preferentially transported by small bandgap SWCNTs especially at low gate voltages, whereas large bandgap species only start to participate at higher carrier concentrations. Our results demonstrate the excellent suitability of modulation spectroscopy to investigate charge transport in nanotube network transistors and highlight the importance of SWCNT network composition for their performance.



قيم البحث

اقرأ أيضاً

Carbon nanotube quantum dots allow accurate control of electron charge, spin and valley degrees of freedom in a material which is atomically perfect and can be grown isotopically pure. These properties underlie the unique potential of carbon nanotube s for quantum information processing, but developing nanotube charge, spin, or spin-valley qubits requires efficient readout techniques as well as understanding and extending quantum coherence in these devices. Here, we report on microwave spectroscopy of a carbon nanotube charge qubit in which quantum information is encoded in the spatial position of an electron. We combine radio-frequency reflectometry measurements of the quantum capacitance of the device with microwave manipulation to drive transitions between the qubit states. This approach simplifies charge-state readout and allows us to operate the device at an optimal point where the qubit is first-order insensitive to charge noise. From these measurements, we are able to quantify the degree of charge noise experienced by the qubit and obtain an inhomogeneous charge coherence of 5 ns. We use a chopped microwave signal whose duty-cycle period is varied to measure the decay of the qubit states, yielding a charge relaxation time of 48 ns.
We report the charge storing 2D carbon nitride potassium poly(heptazine imide), K-PHI, as a direct memristive (bio)sensing platform. Memristive devices have the potential to innovate current (bio)electronic systems such as photo-electrochemical senso rs by incorporating new sensing capabilities including non-invasive, wireless remote and time-delayed (memory) readout. We demonstrate a direct photomemristive sensing platform that capitalizes on K PHIs visible light bandgap, large oxidation potential and intrinsic optoionic light energy storage properties. Our system simultaneously enables analyte concentration information storage as well as potentiometric, impedimetric and coulo-metric readouts on the same material, with no additional reagents required. Utilizing the light-induced charge storage function of K-PHI, we demonstrate analyte sensing via charge accumulation and present various methods to write/erase this information from the material. Additionally, fully wireless colorimetric and fluorometric detection of the charged state of K-PHI is demonstrated and could facilitate its use as particle-based in-situ sensing probe. The various readout options of the K PHIs response enable us to adapt the sensitivities and dynamic ranges without modifying the sensor. We demonstrate these features using glucose as an example analyte over a wide range of concentrations (50 $mu$M to 50 mM). Moreover, due to the strong oxidative power of K-PHI, this sensing platform is able to detect a large variety of organic or biologically relevant analytes. Since PHI is easily synthesized, based on earth abundant precursors, biocompatible, chemically robust and responsive to visible light, we anticipate that the sensing platform presented herein opens up novel memristive and neuromorphic functions.
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi2Te3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectri c performance. These results were reproduced well by first-principles transport simulations based on a simple SWCNT junction model. These findings suggest strategies that pave the way for emerging printed, all-carbon, flexible thermoelectric devices.
We have characterized the conductivity of carbon nanotubes (CNT) fibers enriched in semiconducting species as a function of temperature and pulsed laser irradiation of 266 nm wavelength. While at high temperatures the response approaches an Arrhenius law behavior, from room temperature down to 4.2 K the response can be framed, quantitatively, within the predictions of the fluctuation induced tunneling which occurs between the inner fibrils (bundles) of the samples and/or the elementary CNTs constituting the fibers. Laser irradiation induces an enhancement of the conductivity, and analysis of the resulting data confirms the (exponential) dependence of the potential barrier upon temperature as expected from the fluctuation induced tunneling model. A thermal map of the experimental configuration consisting of laser-irradiated fibers is also obtained via COMSOL simulations in order to rule out bare heating phenomena as the background of our experiments. (*) Author
We investigate charge pumping in carbon nanotube quantum dots driven by the electric field of a surface acoustic wave. We find that at small driving amplitudes, the pumped current reverses polarity as the conductance is tuned through a Coulomb blocka de peak using a gate electrode. We study the behavior as a function of wave amplitude, frequency and direction and develop a model in which our results can be understood as resulting from adiabatic charge redistribution between the leads and quantum dots on the nanotube.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا