ﻻ يوجد ملخص باللغة العربية
Search space design is very critical to neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit that is much smaller than the ones used in recent NAS algorithms. This search space allows a mix of operations by composing different types of atomic blocks, while the search space in previous methods only allows homogeneous operations. Based on this search space, we propose a resource-aware architecture search framework which automatically assigns the computational resources (e.g., output channel numbers) for each operation by jointly considering the performance and the computational cost. In addition, to accelerate the search process, we propose a dynamic network shrinkage technique which prunes the atomic blocks with negligible influence on outputs on the fly. Instead of a search-and-retrain two-stage paradigm, our method simultaneously searches and trains the target architecture. Our method achieves state-of-the-art performance under several FLOPs configurations on ImageNet with a small searching cost. We open our entire codebase at: https://github.com/meijieru/AtomNAS.
Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and
Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed archi
Neural Architecture Search (NAS), the process of automating architecture engineering, is an appealing next step to advancing end-to-end Automatic Speech Recognition (ASR), replacing expert-designed networks with learned, task-specific architectures.
Neural architecture search (NAS) has been successfully applied to tasks like image classification and language modeling for finding efficient high-performance network architectures. In ASR field especially end-to-end ASR, the related research is stil
State-of-the-art deep networks are often too large to deploy on mobile devices and embedded systems. Mobile neural architecture search (NAS) methods automate the design of small models but state-of-the-art NAS methods are expensive to run. Differenti