ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any extra time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the pruning-after-training method by up to 2.3X with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain provides significant improvements both accuracy and compression ratio on the tested CNN models and datasets, under similar limited training time.
Search space design is very critical to neural architecture search (NAS) algorithms. We propose a fine-grained search space comprised of atomic blocks, a minimal search unit that is much smaller than the ones used in recent NAS algorithms. This searc
Scene text detection and recognition have been well explored in the past few years. Despite the progress, efficient and accurate end-to-end spotting of arbitrarily-shaped text remains challenging. In this work, we propose an end-to-end text spotting
E-voting systems are a powerful technology for improving democracy. Unfortunately, prior voting systems have single points-of-failure, which may compromise availability, privacy, or integrity of the election results. We present the design, implemen
The world is covered with millions of buildings, and precisely knowing each instances position and extents is vital to a multitude of applications. Recently, automated building footprint segmentation models have shown superior detection accuracy than
Due to the need to store the intermediate activations for back-propagation, end-to-end (E2E) training of deep networks usually suffers from high GPUs memory footprint. This paper aims to address this problem by revisiting the locally supervised learn