ﻻ يوجد ملخص باللغة العربية
Divergence-free symmetric tensors seem ubiquitous in Mathematical Physics. We show that this structure occurs in models that are described by the so-called second variational principle, where the argument of the Lagrangian is a closed differential form. Divergence-free tensors are nothing but the second form of the Euler--Lagrange equations. The symmetry is associated with the invariance of the Lagrangian density upon the action of some orthogonal group.
The class of Divergence-free symmetric tensors is ubiquitous in Continuum Mechanics. We show its invariance under projective transformations of the independent variables. This action, which preserves the positiveness, extends Sophus Lies group analys
We present an extension of some results of higher order calculus of variations and optimal control to generalized functions. The framework is the category of generalized smooth functions, which includes Schwartz distributions, while sharing many nonl
We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approach
We establish two results concerning the Quantum Limits (QLs) of some sub-Laplacians. First, under a commutativity assumption on the vector fields involved in the definition of the sub-Laplacian, we prove that it is possible to split any QL into sever
In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivit