ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter -- Modified dynamics: Reaction vs. Prediction

90   0   0.0 ( 0 )
 نشر من قبل R. H. Sanders
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert H. Sanders




اسأل ChatGPT حول البحث

The dark energy-cold dark matter paradigm ($Lambda$CDM) has gained widespread acceptance because it explains the pattern of anisotropies observed in the cosmic microwave background radiation, the observed distribution of large scale inhomogeneities in detectable matter, and the perceived overall expansion history of the Universe. It is further {it assumed} that the cosmic dark matter component clusters on the scale of bound astronomical systems and thereby accounts for the observed difference between the directly detectable (baryonic) mass and the total Newtonian dynamical mass. In this respect the paradigm fails; it is falsified by the existence of a simple algorithm, modified Newtonian dynamics (MOND), which explains, not only general scaling relations for astronomical systems, but quite precisely predicts the effective gravitational acceleration in such objects from the observed distribution of detectable baryonic matter -- all of this with one additional universal parameter having units of acceleration. On this sub-Hubble scale, the dark matter hypothesis is essentially reactive, while MOND is successfully predictive.

قيم البحث

اقرأ أيضاً

111 - X. Hernandez 2019
Within the dark matter paradigm, explaining observed orbital dynamics at galactic level through the inclusion of a dominant dark halo, implies also the necessary appearance of dynamical friction effects. Satellite galaxies, globular clusters and even stars orbiting within these galactic halos, will perturb the equilibrium orbits of dark matter particles encountered, to produce a resulting trailing wake of slightly enhanced dark matter density associated with any perturber in the halo. The principal effect of this gravitational interaction between an orbiting body and the dark matter particles composing it, is the appearance of a frictional drag force slowly removing energy and angular momentum from the perturber. Whilst this effect might be relevant to help bring about the actual merger of the components of interacting forming galaxies, at smaller stellar scales, it becomes negligible. However, the trailing wake will still be present. In this letter I show that the corresponding dark matter wake associated to the Sun, will constitute a small but resonant perturbation on solar system dynamics which can be ruled out, as current laser and radio ranging measurements are now over an order of magnitude more precise than the amplitude of the orbital perturbations which said wake implies. The absence of any such detection implies the nonexistence of the dynamical friction trailing wake on the sun, which in turn strongly disfavours dark matter as an explanation for the observed gravitational anomalies at galactic scales.
We propose a new cosmological framework in which the strength of the gravitational force acted on dark matter at late time can be weaker than that on the standard matter fields without introducing extra gravitational degrees of freedom. The framework integrates dark matter into a type-II minimally modified gravity that was recently proposed as a dark energy mimicker. The idea that makes such a framework possible consists of coupling a dark matter Lagrangian and a cosmological constant to the metric in a canonically transformed frame of general relativity (GR). On imposing a gauge fixing constraint, which explicitly breaks the temporal diffeomorphism invariance, we keep the number of gravitational degrees of freedom to be two, as in GR. We then make the inverse canonical transformation to bring the theory back to the original frame, where one can add the standard matter fields. This framework contains two free functions of time which specify the generating functional of the above mentioned canonical transformation and which are then used in order to realize desired time evolutions of both the Hubble expansion rate $H(z)$ and the effective gravitational constant for dark matter $G_{rm eff}(z)$. The aim of this paper is therefore to provide a new framework to address the two puzzles present in todays cosmology, i.e. the $H_0$ tension and the $S_8$ tension, simultaneously. When the dark matter is cold in this framework, we dub the corresponding cosmological model the V Canonical Cold Dark Matter (VCCDM), as the cosmological constant $Lambda$ in the standard $Lambda$CDM is replaced by a function $V(phi)$ of an auxiliary field $phi$ and the CDM is minimally coupled to the metric in a canonically transformed frame.
76 - Anaelle Halle 2008
We propose a unified single-field description of the galactic Dark Matter and various uniform scalar fields for the inflation and cosmological constant. The two types of effects could originate from a fluid of both spatially and temporally varying Va cuum Energy if the vacuum has an uneven pressure caused by a photon-like vector field (of perhaps an unstable massive boson). We propose a most general Lagrangian with a {bf N}on-{bf u}niform Cosmological Constant for this vacuum fluid (dubbed as a Nu-Lambda fluid), working within the framework of Einsteinian gravity. This theory includes a continuous spectrum of plausible dark energy theories and gravity theories, e.g., inflation, quintessence, k-essence, f(R), Generalized Einstein-Aether f(K), MOND, TeVeS, BSTV etc. theories. It also suggests new models such as a certain f(K+R) model, which suggests intriguing corrections to MOND depending of redshift and density. Some specific constructions of the Nu-Lambda fluid (e.g., Zhaos V-$Lambda$ model) closely resemble the $Lambda$CDM cosmology on large scale, but fit galaxy rotation curves as good as MOND. Perturbed Einstein Equations in a simple $f(K_4)$ model are solvable and show effects of a DM coupled to DE. Incorporating the perturbation equations here into standard simulations for cosmological structure growth offers a chance to falsify examples of the Nu-Lambda theories.
We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su mmarize the main results of Hammer et al. (2019) who studied the main scaling relations of dSphs and show how dark-matter free galaxies in departure from equilibrium reproduce them well, while they appear to be challenging for the DM model. These results are consistent with our most recent knowledge about dSph past histories, including their orbits, their past star formation history and their progenitors, which are likely tiny dwarf irregular galaxies.
We generalize the Thomas-Fermi approach to galaxy structure to include self-consistently and non-linearly central supermassive black holes. This approach naturally incorporates the quantum pressure of the warm dark matter (WDM) particles and shows it s full powerful and clearness in the presence of supermassive black holes (SPMHs). We find the main galaxy and central black hole magnitudes: halo radius r_h , halo mass M_h, black hole mass M_BH, velocity dispersion, phase space density, with their realistic astrophysical values, masses and sizes over a wide galaxy range. The SMBH masses arise naturally in this framework. Our extensive numerical calculations and detailed analytic resolution show that with SMBHs, both WDM regimes: classical (Boltzmann dilute) and quantum (compact) do necessarily co-exist in any galaxy: from the smaller and compact galaxies to the largest ones. The transition from the quantum to the classical region occurs precisely at the same point r_A where the chemical potential vanishes. A novel halo structure with three regions shows up: A small quantum compact core of radius r_A around the SMBH, followed by a less compact region till the BH influence radius r_i, and then for r> r_i the known halo galaxy shows up with its astrophysical size. Three representative families of galaxy plus central SMBH solutions are found and analyzed:small, medium and large galaxies having SMBH masses of 10^5, 10^7 and 10^9 M_sun respectively. A minimum galaxy size and mass ~ 10^7 M_sun larger than the one without SMBH is found. Small galaxies in the range 10^4 M_sun < M_h < 10^7 M_sun cannot harbor central SMBHs. We find novel scaling M_BH - r_h - M_h relations. The galaxy equation of state is derived: The pressure P(r) takes huge values in the SMBH vecinity and then sharply decreases entering the classical region following a local perfect gas behaviour.(Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا