ﻻ يوجد ملخص باللغة العربية
Within the dark matter paradigm, explaining observed orbital dynamics at galactic level through the inclusion of a dominant dark halo, implies also the necessary appearance of dynamical friction effects. Satellite galaxies, globular clusters and even stars orbiting within these galactic halos, will perturb the equilibrium orbits of dark matter particles encountered, to produce a resulting trailing wake of slightly enhanced dark matter density associated with any perturber in the halo. The principal effect of this gravitational interaction between an orbiting body and the dark matter particles composing it, is the appearance of a frictional drag force slowly removing energy and angular momentum from the perturber. Whilst this effect might be relevant to help bring about the actual merger of the components of interacting forming galaxies, at smaller stellar scales, it becomes negligible. However, the trailing wake will still be present. In this letter I show that the corresponding dark matter wake associated to the Sun, will constitute a small but resonant perturbation on solar system dynamics which can be ruled out, as current laser and radio ranging measurements are now over an order of magnitude more precise than the amplitude of the orbital perturbations which said wake implies. The absence of any such detection implies the nonexistence of the dynamical friction trailing wake on the sun, which in turn strongly disfavours dark matter as an explanation for the observed gravitational anomalies at galactic scales.
Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjo
The dark energy-cold dark matter paradigm ($Lambda$CDM) has gained widespread acceptance because it explains the pattern of anisotropies observed in the cosmic microwave background radiation, the observed distribution of large scale inhomogeneities i
We speculate on the development and availability of new innovative propulsion techniques in the 2040s, that will allow us to fly a spacecraft outside the Solar System (at 150 AU and more) in a reasonable amount of time, in order to directly probe our
[Abridged] The S-stars motion around the Galactic center (Sgr A*) implies the existence of a compact source with a mass of about $4times 10^6 M_odot$, traditionally assumed to be a massive black hole (BH). Important for any model is the explanation o
A unique signature of the modified Newtonian dynamics (MOND) paradigm is its peculiar behavior in the vicinity of the points where the total Newtonian acceleration exactly cancels. In the Solar System, these are the saddle points of the gravitational