ﻻ يوجد ملخص باللغة العربية
We apply a multiscale modeling approach to study lattice reconstruction in marginally twisted bilayers of transition metal dichalcogenides (TMD). For this, we develop DFT-parametrized interpolation formulae for interlayer adhesion energies of MoSe$_2$, WSe$_2$, MoS$_2$, and WS$_2$, combine those with elasticity theory, and analyze the bilayer lattice relaxation into mesoscale domain structures. Paying particular attention to the inversion asymmetry of TMD monolayers, we show that 3R and 2H stacking domains, separated by a network of dislocations develop for twist angles $theta^{circ}<theta^{circ}_Psim 2.5^{circ}$ and $theta^{circ}<theta^{circ}_{AP}sim 1^{circ}$ for, respectively, bilayers with parallel (P) and antiparallel (AP) orientation of the monolayer unit cells and suggest how the domain structures would manifest itself in local probe scanning of marginally twisted P- and AP-bilayers.
Van der Waals heterostructures form a massive interdisciplinary research field, fueled by the rich material science opportunities presented by layer assembly of artificial solids with controlled composition, order and relative rotation of adjacent at
In moire heterostructures, gate-tunable insulating phases driven by electronic correlations have been recently discovered. Here, we use transport measurements to characterize the gate-driven metal-insulator transitions and the metallic phase in twist
The long wavelength moire superlattices in twisted 2D structures have emerged as a highly tunable platform for strongly correlated electron physics. We study the moire bands in twisted transition metal dichalcogenide homobilayers, focusing on WSe$_2$
Fabricating van der Waals (vdW) bilayer heterostructures (BL-HS) by stacking the same or different two-dimensional (2D) layers, offers a unique physical system with rich electronic and optical properties. Twist-angle between component layers has emer
It has been recently shown that monolayers of transition metal dichalcogenides (TMDs) in the 2H structural phase exhibit relatively large orbital Hall conductivity plateaus within their energy band gaps, where their spin Hall conductivities vanish. H