ﻻ يوجد ملخص باللغة العربية
In moire heterostructures, gate-tunable insulating phases driven by electronic correlations have been recently discovered. Here, we use transport measurements to characterize the gate-driven metal-insulator transitions and the metallic phase in twisted WSe$_2$ near half filling of the first moire subband. We find that the metal-insulator transition as a function of both density and displacement field is continuous. At the metal-insulator boundary, the resistivity displays strange metal behaviour at low temperature with dissipation comparable to the Planckian limit. Further into the metallic phase, Fermi-liquid behaviour is recovered at low temperature which evolves into a quantum critical fan at intermediate temperatures before eventually reaching an anomalous saturated regime near room temperature. An analysis of the residual resistivity indicates the presence of strong quantum fluctuations in the insulating phase. These results establish twisted WSe$_2$ as a new platform to study doping and bandwidth controlled metal-insulator quantum phase transitions on the triangular lattice.
Van der Waals heterostructures form a massive interdisciplinary research field, fueled by the rich material science opportunities presented by layer assembly of artificial solids with controlled composition, order and relative rotation of adjacent at
We apply a multiscale modeling approach to study lattice reconstruction in marginally twisted bilayers of transition metal dichalcogenides (TMD). For this, we develop DFT-parametrized interpolation formulae for interlayer adhesion energies of MoSe$_2
Using a multiscale computational approach, we probe the origin and evolution of ultraflatbands in moire superlattices of twisted bilayer MoS$_2$, a prototypical transition metal dichalcogenide. Unlike twisted bilayer graphene, we find no unique magic
The crystal structure of a material creates a periodic potential that electrons move through giving rise to the electronic band structure of the material. When two-dimensional materials are stacked, the twist angle between the layers becomes an addit
Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient excito