ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of out-of-equilibrium electron and phonon dynamics in metals after ultrafast laser excitation

303   0   0.0 ( 0 )
 نشر من قبل Ulrike Ritzmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The out-of-equilibrium dynamics of electrons and phonons upon laser excitation are often described by the two-temperature model, which assumes that both subsystems are separately in thermal equilibrium. However, recent experiments show that this description is not sufficient to describe the out-of-equilibrium dynamics on ultrashort timescales. Here, we extend and apply a parameter-free microscopic out-of-equilibrium model to describe the ultrafast laser-induced system dynamics of archetypical metallic systems such as gold, aluminum, iron, nickel, and cobalt. We report strong deviations from the two-temperature model on the picosecond timescale for all the materials studied, even for those where the assumption of separate thermal equilibriums seemed less restrictive, like in gold. Furthermore, we demonstrate the importance of the phonon-mode dependent electron-phonon coupling for the relaxation process and reveal the significance of this channel in the lattice equilibration through an indirect coupling between phonons via the electronic system.

قيم البحث

اقرأ أيضاً

Spin and charge-current dynamics after ultrafast spin-polarized excitation in a normal metal are studied theoretically using a wave-diffusion theory. It is shown analytically how this macroscopic approach correctly describes the ballistic and diffusi ve properties of spin and charge transport, but also applies to the intermediate regime between these two limits. Using the wave-diffusion equations we numerically analyze spin and charge dynamics after ultrafast excitation of spin polarized carriers in thin gold films. Assuming slightly spin-dependent momentum relaxation times, we find that a unified treatment of diffusive and ballistic transport yields robust signatures in the spin and charge dynamics, which are in qualitative agreement with recent experimental results [Phys. Rev. Lett 107, 076601 (2011)]. The influence of boundary effects on the temporal signatures of spin transport is also studied.
In the past decade, the advent of time-resolved spectroscopic tools has provided a new ground to explore fundamental interactions in solids and to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) has been utilized to directly study the relaxation dynamics of a metal in the presence of electron-phonon coupling. The effect of photo-excitations on the real and imaginary part of the self-energy as well as the time scale associated with different recombination processes are discussed. In contrast to a theoretical model, the phonon energy does not set a clear scale governing quasiparticle dynamics, which is also different from the results observed in a superconducting material. These results point to the need for a more complete theoretical framework to understand electron-phonon interaction in a photo-excited state.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We report the lattice dynamics of transition metal thin films by using the ultrafast electron diffraction. We observe a suppression of the diffraction intensity in a few picosecond after the photoexcitation, which is directly interpreted as the latti ce heating via the electron-phonon interaction. The electron-phonon coupling constants for Au, Cu and Mo are quantitatively evaluated by employing the two-temperature model, which are consistent with those obtained by optical pump-probe methods. The variation in the lattice dynamics of the transition metals are systematically explained by the strength of the electron-phonon coupling, arising from the elemental dependence of the electronic structure and atomic mass.
398 - J. Qi , X. Chen , W. Yu 2010
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation t imescale and the sign of the reflectivity change suggest that electron-phonon interactions and defect-induced charge trapping are the underlying mechanisms for the three processes. After the crystal is exposed to air, the relative strength of these processes is altered and becomes strongly dependent on the excitation photon energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا