ترغب بنشر مسار تعليمي؟ اضغط هنا

The Acceleration and Confinement of Energetic Electrons by a Termination Shock in a Magnetic Trap: An Explanation for Nonthermal Loop-top Sources during Solar Flares

128   0   0.0 ( 0 )
 نشر من قبل X. L. Kong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonthermal loop-top sources in solar flares are the most prominent observational signature that suggests energy release and particle acceleration in the solar corona. Although several scenarios for particle acceleration have been proposed, the origin of the loop-top sources remains unclear. Here we present a model that combines a large-scale magnetohydrodynamic simulation of a two-ribbon flare with a particle acceleration and transport model for investigating electron acceleration by a fast-mode termination shock at the looptop. Our model provides spatially resolved electron distribution that evolves in response to the dynamic flare geometry. We find a concave-downward magnetic structure located below the flare termination shock, induced by the fast reconnection downflows. It acts as a magnetic trap to confine the electrons at the looptop for an extended period of time. The electrons are energized significantly as they cross the shock front, and eventually build up a power-law energy spectrum extending to hundreds of keV. We suggest that this particle acceleration and transport scenario driven by a flare termination shock is a viable interpretation for the observed nonthermal loop-top sources.

قيم البحث

اقرأ أيضاً

66 - Bin Chen 2015
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model o f solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
Plasma turbulence is thought to be associated with various physical processes involved in solar flares, including magnetic reconnection, particle acceleration and transport. Using Ramaty High Energy Solar Spectroscopic Imager ({it RHESSI}) observatio ns and the X-ray visibility analysis, we determine the spatial and spectral distributions of energetic electrons for a flare (GOES M3.7 class, April 14, 2002 23$:$55 UT), which was previously found to be consistent with a reconnection scenario. It is demonstrated that because of the high density plasma in the loop, electrons have to be continuously accelerated about the loop apex of length $sim 2times 10^9$cm and width $sim 7times 10^8$cm. Energy dependent transport of tens of keV electrons is observed to occur both along and across the guiding magnetic field of the loop. We show that the cross-field transport is consistent with the presence of magnetic turbulence in the loop, where electrons are accelerated, and estimate the magnitude of the field line diffusion coefficient for different phases of the flare. The energy density of magnetic fluctuations is calculated for given magnetic field correlation lengths and is larger than the energy density of the non-thermal electrons. The level of magnetic fluctuations peaks when the largest number of electrons is accelerated and is below detectability or absent at the decay phase. These hard X-ray observations provide the first observational evidence that magnetic turbulence governs the evolution of energetic electrons in a dense flaring loop and is suggestive of their turbulent acceleration.
Globally-propagating shocks in the solar corona have long been studied to quantify their involvement in the acceleration of energetic particles. However, this work has tended to focus on large events associated with strong solar flares and fast coron al mass ejections (CMEs), where the waves are sufficiently fast to easily accelerate particles to high energies. Here we present observations of particle acceleration associated with a global wave event which occurred on 1 October 2011. Using differential emission measure analysis, the global shock wave was found to be incredibly weak, with an Alfven Mach number of ~1.008-1.013. Despite this, spatially-resolved type III radio emission was observed by the Nanc{c}ay RadioHeliograph at distinct locations near the shock front, suggesting localised acceleration of energetic electrons. Further investigation using a magnetic field extrapolation identified a fan structure beneath a magnetic null located above the source active region, with the erupting CME contained within this topological feature. We propose that a reconfiguration of the coronal magnetic field driven by the erupting CME enabled the weak shock to accelerate particles along field lines initially contained within the fan and subsequently opened into the heliosphere, producing the observed type III emission. These results suggest that even weak global shocks in the solar corona can accelerate energetic particles via reconfiguration of the surrounding magnetic field.
Traditionally, the solar magnetic field has been considered to have a negligible effect in the outer regions of the heliosphere. Recent works have shown that the solar magnetic field may play a crucial role in collimating the plasma in the heliosheat h. Interstellar Boundary Explorer (IBEX) observations of the heliotail indicated a latitudinal structure varying with energy in the energetic neutral atom (ENA) fluxes. At energies ~1 keV, the ENA fluxes show an enhancement at low latitudes and a deficit of ENAs near the poles. At energies >2.7 keV, ENA fluxes had a deficit within low latitudes, and lobes of higher ENA flux near the poles. This ENA structure was initially interpreted to be a result of the latitudinal profile of the solar wind during solar minimum. We extend the work of Kornbleuth et al. (2018) by using solar minimum-like conditions and the recently developed SHIELD model. The SHIELD model couples the magnetohydrodynamic (MHD) plasma solution with a kinetic description of neutral hydrogen. We show that while the latitudinal profile of the solar wind during solar minimum contributes to the lobes in ENA maps, the collimation by the solar magnetic field is important in creating and shaping the two high latitude lobes of enhanced ENA flux observed by IBEX. This is the first work to explore the effect of the changing solar magnetic field strength on ENA maps. Our findings suggest that IBEX is providing the first observational evidence of the collimation of the heliosheath plasma by the solar magnetic field.
Understanding nonthermal particle generation, transport, and escape in solar flares requires detailed quantification of the particle evolution in the realistic 3D domain where the flare takes place. Rather surprisingly, apart of standard flare scenar io and integral characteristics of the nonthermal electrons, not much is known about actual evolution of nonthermal electrons in the 3D spatial domain. This paper attempts to begin to remedy this situation by creating sets of evolving 3D models, the synthesized emission from which matches the evolving observed emission. Here we investigate two contrasting flares: a dense, coronal-thick-target flare SOL2002-04-12T17:42, that contained a single flare loop observed in both microwave and X-ray, and a more complex flare, SOL2015-06-22T17:50, that contained at least four distinct flaring loops needed to consistently reproduce the microwave and X-ray emission. Our analysis reveals differing evolution pattern of the nonthermal electrons in the dense and tenuous loops; however, both of which imply the central role of resonant wave-particle interaction with turbulence. These results offer new constraints for theory and models of the particle acceleration and transport in solar flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا