ﻻ يوجد ملخص باللغة العربية
A minimal perfect hash function bijectively maps a key set $S$ out of a universe $U$ into the first $|S|$ natural numbers. Minimal perfect hash functions are used, for example, to map irregularly-shaped keys, such as string, in a compact space so that metadata can then be simply stored in an array. While it is known that just $1.44$ bits per key are necessary to store a minimal perfect function, no published technique can go below $2$ bits per key in practice. We propose a new technique for storing minimal perfect hash functions with expected linear construction time and expected constant lookup time that makes it possible to build for the first time, for example, structures which need $1.56$ bits per key, that is, within $8.3$% of the lower bound, in less than $2$ ms per key. We show that instances of our construction are able to simultaneously beat the construction time, space usage and lookup time of the state-of-the-art data structure reaching $2$ bits per key. Moreover, we provide parameter choices giving structures which are competitive with alternative, larger-size data structures in terms of space and lookup time. The construction of our data structures can be easily parallelized or mapped on distributed computational units (e.g., within the MapReduce framework), and structures larger than the available RAM can be directly built in mass storage.
Recent advances in random linear systems on finite fields have paved the way for the construction of constant-time data structures representing static functions and minimal perfect hash functions using less space with respect to existing techniques.
We present the first provable Least-Squares Value Iteration (LSVI) algorithms that have runtime complexity sublinear in the number of actions. We formulate the value function estimation procedure in value iteration as an approximate maximum inner pro
Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect match
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial
In this paper we further investigate the well-studied problem of finding a perfect matching in a regular bipartite graph. The first non-trivial algorithm, with running time $O(mn)$, dates back to K{o}nigs work in 1916 (here $m=nd$ is the number of ed