ﻻ يوجد ملخص باللغة العربية
Recent advances in random linear systems on finite fields have paved the way for the construction of constant-time data structures representing static functions and minimal perfect hash functions using less space with respect to existing techniques. The main obstruction for any practical application of these results is the cubic-time Gaussian elimination required to solve these linear systems: despite they can be made very small, the computation is still too slow to be feasible. In this paper we describe in detail a number of heuristics and programming techniques to speed up the resolution of these systems by several orders of magnitude, making the overall construction competitive with the standard and widely used MWHC technique, which is based on hypergraph peeling. In particular, we introduce broadword programming techniques for fast equation manipulation and a lazy Gaussian elimination algorithm. We also describe a number of technical improvements to the data structure which further reduce space usage and improve lookup speed. Our implementation of these techniques yields a minimal perfect hash function data structure occupying 2.24 bits per element, compared to 2.68 for MWHC-based ones, and a static function data structure which reduces the multiplicative overhead from 1.23 to 1.03.
A minimal perfect hash function bijectively maps a key set $S$ out of a universe $U$ into the first $|S|$ natural numbers. Minimal perfect hash functions are used, for example, to map irregularly-shaped keys, such as string, in a compact space so tha
This report describes an implementation of a non-blocking concurrent shared-memory hash trie based on single-word compare-and-swap instructions. Insert, lookup and remove operations modifying different parts of the hash trie can be run independent of
Ctrie is a scalable concurrent non-blocking dictionary data structure, with good cache locality, and non-blocking linearizable iterators. However, operations on most existing concurrent hash tries run in O(log n) time. In this technical report, we ex
Hash functions are a basic cryptographic primitive. Certain hash functions try to prove security against collision and preimage attacks by reductions to known hard problems. These hash functions usually have some additional properties that allow for
Automated generation of high-quality topical hierarchies for a text collection is a dream problem in knowledge engineering with many valuable applications. In this paper a scalable and robust algorithm is proposed for constructing a hierarchy of topi