ترغب بنشر مسار تعليمي؟ اضغط هنا

Four (Super)luminous Supernovae from the First Months of the ZTF Survey

120   0   0.0 ( 0 )
 نشر من قبل Ragnhild Lunnan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometry and spectroscopy of four hydrogen-poor luminous supernovae discovered during the two-month science commissioning and early operations of the Zwicky Transient Facility (ZTF) survey. Three of these objects, SN2018bym (ZTF18aapgrxo), SN2018avk (ZTF18aaisyyp) and SN2018bgv (ZTF18aavrmcg) resemble typical SLSN-I spectroscopically, while SN2018don (ZTF18aajqcue) may be an object similar to SN2007bi experiencing considerable host galaxy reddening, or an intrinsically long-lived, luminous and red SN Ic. We analyze the light curves, spectra, and host galaxy properties of these four objects and put them in context of the population of SLSN-I. SN2018bgv stands out as the fastest-rising SLSN-I observed to date, with a rest-frame g-band rise time of just 10 days from explosion to peak -- if it is powered by magnetar spin-down, the implied ejecta mass is only ~1 M$_{odot}$. SN2018don also displays unusual properties -- in addition to its red colors and comparatively massive host galaxy, the light curve undergoes some of the strongest light curve undulations post-peak seen in a SLSN-I, which we speculate may be due to interaction with circumstellar material. We discuss the promises and challenges of finding SLSNe in large-scale surveys like ZTF given the observed diversity in the population.

قيم البحث

اقرأ أيضاً

We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days late r shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, 56Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct re-brightening at around 100d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionisation front breaking out of the ejecta.
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASAs Kepler mission has identified 1235 transiting p lanet candidates (Borcuki et al 2011). The method of transit timing variations (TTVs) has already confirmed 7 planets in two planetary systems (Holman et al. 2010; Lissauer et al. 2011a). We perform a transit timing analysis of the Kepler planet candidates. We find that at least ~12% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least ~65 TTV candidates. In all cases, the time span of observations must increase for TTVs to provide strong constraints on planet masses and/or orbits, as expected based on n-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find that the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least ~12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least six years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.
We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I $lambda$10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of co, and would require 1-4M of i to produce the luminosity. These i masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of $0.4lesssim E$($10^{51}$erg) $lesssim6.9$ and ejecta masses of $2.3lesssim M_{ej}$(M) $lesssim 8.6$. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.
Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than 1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant branch up to high-luminous red giants. The high-precision asteroseismic observations with Kepler provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our Galaxy. We fit a global model to the observed frequency spectra, which allows us to accurately estimate the granulation background signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic frequency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation. The seismic parameters are used to estimate stellar masses and radii and to place the stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques throughout our analysis allows us to determine reliable uncertainties for all parameters. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their asteroseismic fundamental parameters. We investigate the influence of the stars metallicities on their positions in the H-R diagram. We study the red-giant populations in the red clump and bump and compare them to a synthetic population and find a mass and metallicity gradient in the red clump and clear evidence of a secondary-clump population.
112 - Avishay Gal-Yam 2018
Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100) those of normal events, has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. SLSNe can be classified into hydrogen poor (SLSNe-I) and hydrogen rich (SLSNe-II) events. Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of M_g<-19.8 mag at peak appears to separate SLSNe-I from the normal population. SLSN-I light curves can be quite complex, presenting both early bumps and late post-peak undulations. SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. SLSNe-II are not nearly as well studied, lacking information based on large sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars (M>40 solar). Host galaxies of SLSNe in the nearby universe tend to have low mass and sub-solar metallicity. SLSNe are rare, with rates <100 times lower than ordinary SNe. SLSN cosmology and their use as beacons to study the high-redshift universe offer exciting future prospects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا