ترغب بنشر مسار تعليمي؟ اضغط هنا

The Most Luminous Supernovae

113   0   0.0 ( 0 )
 نشر من قبل Avishay Gal-Yam
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Avishay Gal-Yam




اسأل ChatGPT حول البحث

Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100) those of normal events, has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. SLSNe can be classified into hydrogen poor (SLSNe-I) and hydrogen rich (SLSNe-II) events. Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of M_g<-19.8 mag at peak appears to separate SLSNe-I from the normal population. SLSN-I light curves can be quite complex, presenting both early bumps and late post-peak undulations. SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. SLSNe-II are not nearly as well studied, lacking information based on large sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars (M>40 solar). Host galaxies of SLSNe in the nearby universe tend to have low mass and sub-solar metallicity. SLSNe are rare, with rates <100 times lower than ordinary SNe. SLSN cosmology and their use as beacons to study the high-redshift universe offer exciting future prospects.

قيم البحث

اقرأ أيضاً

We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days late r shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, 56Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct re-brightening at around 100d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionisation front breaking out of the ejecta.
96 - Avishay Gal-Yam 2012
Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs of SLSN-II.
In this paper, we investigate the energy-source models for the most luminous supernova ASASSN-15lh. We revisit the ejecta-circumstellar medium (CSM) interaction (CSI) model and the CSI plus magnetar spin-down with full gamma-ray/X-ray trapping which were adopted by cite{Chatzopoulos16} and find that the two models cannot fit the bolometric LC of ASASSN-15lh. Therefore, we consider a CSI plus magnetar model with the gamma-rays/X-rays leakage effect to eliminate the late-time excess of the theoretical LC. We find that this revised model can reproduce the bolometric LC of ASASSN-15lh. Moreover, we construct a new hybrid model (i.e., the CSI plus fallback model), and find that it can also reproduce the bolometric LC of ASASSN-15lh. Assuming that the conversion efficiency ($eta$) of fallback accretion to the outflow is typically $sim10^{-3}$, we derive that the total mass accreted is $sim3.9~M_odot$. The inferred CSM mass in the two models is rather large, indicating that the progenitor could have experienced an eruption of hydrogen-poor materials followed by an energetic core-collapse explosion leaving behind a magnetar or a black hole.
We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely PTF10hgi, SN2011ke, PTF11rks, SN2011kf and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high resolution, optical and near infrared spectrum from xshooter provides detection of a broad He I $lambda$10830 emission line in the spectrum (+50d) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of co, and would require 1-4M of i to produce the luminosity. These i masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favour energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive lightcurve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of $0.4lesssim E$($10^{51}$erg) $lesssim6.9$ and ejecta masses of $2.3lesssim M_{ej}$(M) $lesssim 8.6$. The sample of five SL-SNe Ic presented here, combined with SN 2010gx - the best sampled SL-SNe Ic so far - point toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.
We report the discovery of X-ray emission from CFHQS J142952+544717, the most distant known radio-loud quasar at z=6.18, on Dec. 10--11, 2019 with the eROSITA telescope on board the SRG satellite during its ongoing all-sky survey. The object was iden tified by cross-matching an intermediate SRG/eROSITA source catalog with the Pan-STARRS1 distant quasar sample at 5.6 < z < 6.7. The measured flux $sim 8 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$ in the 0.3--2 keV energy band corresponds to an X-ray luminosity of $2.6^{+1.7}_{-1.0}times 10^{46}$ erg s$^{-1}$ in the 2--10 keV rest-frame energy band, which renders CFHQS J142952+544717 the most X-ray luminous quasar ever observed at z > 6. Combining our X-ray measurements with archival and new photometric measurements in other wavebands (radio to optical), we estimate the bolometric luminosity of this quasar at $sim (2$--$3) times 10^{47}$ erg s$^{-1}$. Assuming Eddington limited accretion and isotropic emission, we infer a lower limit on the mass of the supermassive black hole of $sim 2times 10^9 M_odot$. The most salient feature of CFHQS J142952+544717 is its X-ray brightness relative to the optical/UV emission. We argue that it may be linked to its radio-loudness (although the object is not a blazar according to its radio properties), specifically to a contribution of inverse Compton scattering of cosmic microwave background photons off relativistic electrons in the jets. If so, CFHQS J142952+544717 might be the tip of the iceberg of high-z quasars with enhanced X-ray emission, and SRG/eROSITA may find many more such objects during its 4 year all-sky survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا