ﻻ يوجد ملخص باللغة العربية
The attention layer in a neural network model provides insights into the models reasoning behind its prediction, which are usually criticized for being opaque. Recently, seemingly contradictory viewpoints have emerged about the interpretability of attention weights (Jain & Wallace, 2019; Vig & Belinkov, 2019). Amid such confusion arises the need to understand attention mechanism more systematically. In this work, we attempt to fill this gap by giving a comprehensive explanation which justifies both kinds of observations (i.e., when is attention interpretable and when it is not). Through a series of experiments on diverse NLP tasks, we validate our observations and reinforce our claim of interpretability of attention through manual evaluation.
Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we
Natural Language Processing (NLP) models have become increasingly more complex and widespread. With recent developments in neural networks, a growing concern is whether it is responsible to use these models. Concerns such as safety and ethics can be
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. Wh
There have been various types of pretraining architectures including autoregressive models (e.g., GPT), autoencoding models (e.g., BERT), and encoder-decoder models (e.g., T5). On the other hand, NLP tasks are different in nature, with three main cat
Many NLP tasks such as tagging and machine reading comprehension are faced with the severe data imbalance issue: negative examples significantly outnumber positive examples, and the huge number of background examples (or easy-negative examples) overw