ﻻ يوجد ملخص باللغة العربية
We apply a machine learning technique for identifying the topological charge of quantum gauge configurations in four-dimensional SU(3) Yang-Mills theory. The topological charge density measured on the original and smoothed gauge configurations with and without dimensional reduction is used as inputs for the neural networks (NN) with and without convolutional layers. The gradient flow is used for the smoothing of the gauge field. We find that the topological charge determined at a large flow time can be predicted with high accuracy from the data at small flow times by the trained NN; for example, the accuracy exceeds $99%$ with the data at $t/a^2le0.3$. High robustness against the change of simulation parameters is also confirmed with a fixed physical volume. We find that the best performance is obtained when the spatial coordinates of the topological charge density are fully integrated out in preprocessing, which implies that our convolutional NN does not find characteristic structures in multi-dimensional space relevant for the determination of the topological charge.
The center vortex model for the infrared sector of SU(3) Yang-Mills theory is reviewed. After discussing the physical foundations underlying the model, some technical aspects of its realisation are discussed. The confining properties of the model are
We employ a machine learning technique for an estimate of the topological charge $Q$ of gauge configurations in SU(3) Yang-Mills theory in vacuum. As a first trial, we feed the four-dimensional topological charge density with and without smoothing in
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effec
The topological susceptibility of the SU(3) random vortex world-surface ensemble, an effective model of infrared Yang-Mills dynamics, is investigated. The model is implemented by composing vortex world-surfaces of elementary squares on a hypercubic l
We study the pressure anisotropy in anisotropic finite-size systems in SU(3) Yang-Mills theory at nonzero temperature. Lattice simulations are performed on lattices with anisotropic spatial volumes with periodic boundary conditions. The energy-moment