ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact quantum search based on analytical multiphase matching for known number of target items and the experimental demonstration on IBM Q

45   0   0.0 ( 0 )
 نشر من قبل Tan Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In [Phys. Rev. Lett. 113, 210501 (2014)], to achieve the optimal fixed-point quantum search in the case of unknown fraction (denoted by $lambda$) of target items, the analytical multiphase matching (AMPM) condition has been proposed. In this paper, we find out that the AMPM condition can also be used to design the exact quantum search algorithm in the case of known $lambda$, and the minimum number of iterations reaches the optimal level of existing exact algorithms. Experiments are performed to demonstrate the proposed algorithm on IBMs quantum computer. In addition, we theoretically find two coincidental phases with equal absolute value in our algorithm based on the AMPM condition and that algorithm based on single-phase matching. Our work confirms the practicability of the AMPM condition in the case of known $lambda$, and is helpful to understand the mechanism of this condition.

قيم البحث

اقرأ أيضاً

Grovers algorithm achieves a quadratic speedup over classical algorithms, but it is considered necessary to know the value of $lambda$ exactly [Phys. Rev. Lett. 95, 150501 (2005); Phys. Rev. Lett. 113, 210501 (2014)], where $lambda$ is the fraction o f target items in the database. In this paper, we find out that the Grover algorithm can actually apply to the case where one can identify the range that $lambda$ belongs to from a given series of disjoint ranges. However, Grovers algorithm still cannot maintain high success probability when there exist multiple target items. For this problem, we proposed a complementary-multiphase quantum search algorithm, %with general iterations, in which multiple phases complement each other so that the overall high success probability can be maintained. Compared to the existing algorithms, in the case defined above, for the first time our algorithm achieves the following three goals simultaneously: (1) the success probability can be no less than any given value between 0 and 1, (2) the algorithm is applicable to the entire range of $lambda$, and (3) the number of iterations is almost the same as that of Grovers algorithm. Especially compared to the optimal fixed-point algorithm [Phys. Rev. Lett. 113, 210501 (2014)], our algorithm uses fewer iterations to achieve success probability greater than 82.71%, e.g., when the minimum success probability is required to be 99.25%, the number of iterations can be reduced by 50%.
We report the first experimental demonstration of quantum synchronization. This is achieved by performing a digital simulation of a single spin-$1$ limit-cycle oscillator on the quantum computers of the IBM Q System. Applying an external signal to th e oscillator, we verify typical features of quantum synchronization and demonstrate an interference-based quantum synchronization blockade. Our results show that state-of-the-art noisy intermediate-scale quantum computers are powerful enough to implement realistic dissipative quantum systems. Finally, we discuss limitations of current quantum hardware and define requirements necessary to investigate more complex problems.
We study the results of a compiled version of Shors factoring algorithm on the ibmqx5 superconducting chip, for the particular case of $N=15$, $21$ and $35$. The semi-classical quantum Fourier transform is used to implement the algorithm with only a small number of physical qubits and the circuits are designed to reduce the number of gates to the minimum. We use the square of the statistical overlap to give a quantitative measure of the similarity between the experimentally obtained distribution of phases and the predicted theoretical distribution one for different values of the period. This allows us to assign a period to the experimental data without the use of the continued fraction algorithm. A quantitative estimate of the error in our assignment of the period is then given by the overlap coefficient.
Quantum network coding has been proposed to improve resource utilization to support distributed computation but has not yet been put in to practice. We investigate a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. We compare the performance of quantum network coding with entanglement swapping and entanglement distribution via linear cluster states. These protocols outperform quantum network coding in terms of the final Bell pair fidelities but are unsuitable for optimal resource utilization in complex networks with contention present. We demonstrate the suitability of noisy intermediate-scale quantum (NISQ) devices such as IBM Q for the study of quantum networks. We also identify the factors that limit the performance of quantum network coding on these processors and provide estimates or error rates required to boost the final Bell pair fidelities to a point where they can be used for generation of genuinely random cryptographic keys among other useful tasks. Surprisingly, the required error rates are only around a factor of 2 smaller than the current status and we expect they will be achieved in the near future.
For the unsorted database quantum search with the unknown fraction $lambda$ of target items, there are mainly two kinds of methods, i.e., fixed-point or trail-and-error. (i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett. 113, 2105 01 (2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoders algorithm is actually in $O(1/sqrt{lambda_0})$ rather than $O(1/sqrt{lambda})$, where $lambda_0$ is a known lower bound of $lambda$. (ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoders algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in $lambda$ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides an new idea for the research on fixed-point and trial-and-error quantum search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا