ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Supervised Adaptation of High-Fidelity Face Models for Monocular Performance Tracking

206   0   0.0 ( 0 )
 نشر من قبل Jae Shin Yoon
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Improvements in data-capture and face modeling techniques have enabled us to create high-fidelity realistic face models. However, driving these realistic face models requires special input data, e.g. 3D meshes and unwrapped textures. Also, these face models expect clean input data taken under controlled lab environments, which is very different from data collected in the wild. All these constraints make it challenging to use the high-fidelity models in tracking for commodity cameras. In this paper, we propose a self-supervised domain adaptation approach to enable the animation of high-fidelity face models from a commodity camera. Our approach first circumvents the requirement for special input data by training a new network that can directly drive a face model just from a single 2D image. Then, we overcome the domain mismatch between lab and uncontrolled environments by performing self-supervised domain adaptation based on consecutive frame texture consistency based on the assumption that the appearance of the face is consistent over consecutive frames, avoiding the necessity of modeling the new environment such as lighting or background. Experiments show that we are able to drive a high-fidelity face model to perform complex facial motion from a cellphone camera without requiring any labeled data from the new domain.



قيم البحث

اقرأ أيضاً

3D video avatars can empower virtual communications by providing compression, privacy, entertainment, and a sense of presence in AR/VR. Best 3D photo-realistic AR/VR avatars driven by video, that can minimize uncanny effects, rely on person-specific models. However, existing person-specific photo-realistic 3D models are not robust to lighting, hence their results typically miss subtle facial behaviors and cause artifacts in the avatar. This is a major drawback for the scalability of these models in communication systems (e.g., Messenger, Skype, FaceTime) and AR/VR. This paper addresses previous limitations by learning a deep learning lighting model, that in combination with a high-quality 3D face tracking algorithm, provides a method for subtle and robust facial motion transfer from a regular video to a 3D photo-realistic avatar. Extensive experimental validation and comparisons to other state-of-the-art methods demonstrate the effectiveness of the proposed framework in real-world scenarios with variability in pose, expression, and illumination. Please visit https://www.youtube.com/watch?v=dtz1LgZR8cc for more results. Our project page can be found at https://www.cs.rochester.edu/u/lchen63.
Recent advances in self-supervised learning havedemonstrated that it is possible to learn accurate monoculardepth reconstruction from raw video data, without using any 3Dground truth for supervision. However, in robotics applications,multiple views o f a scene may or may not be available, depend-ing on the actions of the robot, switching between monocularand multi-view reconstruction. To address this mixed setting,we proposed a new approach that extends any off-the-shelfself-supervised monocular depth reconstruction system to usemore than one image at test time. Our method builds on astandard prior learned to perform monocular reconstruction,but uses self-supervision at test time to further improve thereconstruction accuracy when multiple images are available.When used to update the correct components of the model, thisapproach is highly-effective. On the standard KITTI bench-mark, our self-supervised method consistently outperformsall the previous methods with an average 25% reduction inabsolute error for the three common setups (monocular, stereoand monocular+stereo), and comes very close in accuracy whencompared to the fully-supervised state-of-the-art methods.
The reconstruction of dense 3D models of face geometry and appearance from a single image is highly challenging and ill-posed. To constrain the problem, many approaches rely on strong priors, such as parametric face models learned from limited 3D sca n data. However, prior models restrict generalization of the true diversity in facial geometry, skin reflectance and illumination. To alleviate this problem, we present the first approach that jointly learns 1) a regressor for face shape, expression, reflectance and illumination on the basis of 2) a concurrently learned parametric face model. Our multi-level face model combines the advantage of 3D Morphable Models for regularization with the out-of-space generalization of a learned corrective space. We train end-to-end on in-the-wild images without dense annotations by fusing a convolutional encoder with a differentiable expert-designed renderer and a self-supervised training loss, both defined at multiple detail levels. Our approach compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.
Recent learning-based approaches, in which models are trained by single-view images have shown promising results for monocular 3D face reconstruction, but they suffer from the ill-posed face pose and depth ambiguity issue. In contrast to previous wor ks that only enforce 2D feature constraints, we propose a self-supervised training architecture by leveraging the multi-view geometry consistency, which provides reliable constraints on face pose and depth estimation. We first propose an occlusion-aware view synthesis method to apply multi-view geometry consistency to self-supervised learning. Then we design three novel loss functions for multi-view consistency, including the pixel consistency loss, the depth consistency loss, and the facial landmark-based epipolar loss. Our method is accurate and robust, especially under large variations of expressions, poses, and illumination conditions. Comprehensive experiments on the face alignment and 3D face reconstruction benchmarks have demonstrated superiority over state-of-the-art methods. Our code and model are released in https://github.com/jiaxiangshang/MGCNet.
Although current face anti-spoofing methods achieve promising results under intra-dataset testing, they suffer from poor generalization to unseen attacks. Most existing works adopt domain adaptation (DA) or domain generalization (DG) techniques to ad dress this problem. However, the target domain is often unknown during training which limits the utilization of DA methods. DG methods can conquer this by learning domain invariant features without seeing any target data. However, they fail in utilizing the information of target data. In this paper, we propose a self-domain adaptation framework to leverage the unlabeled test domain data at inference. Specifically, a domain adaptor is designed to adapt the model for test domain. In order to learn a better adaptor, a meta-learning based adaptor learning algorithm is proposed using the data of multiple source domains at the training step. At test time, the adaptor is updated using only the test domain data according to the proposed unsupervised adaptor loss to further improve the performance. Extensive experiments on four public datasets validate the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا