ترغب بنشر مسار تعليمي؟ اضغط هنا

High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation

117   0   0.0 ( 0 )
 نشر من قبل Lele Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

3D video avatars can empower virtual communications by providing compression, privacy, entertainment, and a sense of presence in AR/VR. Best 3D photo-realistic AR/VR avatars driven by video, that can minimize uncanny effects, rely on person-specific models. However, existing person-specific photo-realistic 3D models are not robust to lighting, hence their results typically miss subtle facial behaviors and cause artifacts in the avatar. This is a major drawback for the scalability of these models in communication systems (e.g., Messenger, Skype, FaceTime) and AR/VR. This paper addresses previous limitations by learning a deep learning lighting model, that in combination with a high-quality 3D face tracking algorithm, provides a method for subtle and robust facial motion transfer from a regular video to a 3D photo-realistic avatar. Extensive experimental validation and comparisons to other state-of-the-art methods demonstrate the effectiveness of the proposed framework in real-world scenarios with variability in pose, expression, and illumination. Please visit https://www.youtube.com/watch?v=dtz1LgZR8cc for more results. Our project page can be found at https://www.cs.rochester.edu/u/lchen63.



قيم البحث

اقرأ أيضاً

Improvements in data-capture and face modeling techniques have enabled us to create high-fidelity realistic face models. However, driving these realistic face models requires special input data, e.g. 3D meshes and unwrapped textures. Also, these face models expect clean input data taken under controlled lab environments, which is very different from data collected in the wild. All these constraints make it challenging to use the high-fidelity models in tracking for commodity cameras. In this paper, we propose a self-supervised domain adaptation approach to enable the animation of high-fidelity face models from a commodity camera. Our approach first circumvents the requirement for special input data by training a new network that can directly drive a face model just from a single 2D image. Then, we overcome the domain mismatch between lab and uncontrolled environments by performing self-supervised domain adaptation based on consecutive frame texture consistency based on the assumption that the appearance of the face is consistent over consecutive frames, avoiding the necessity of modeling the new environment such as lighting or background. Experiments show that we are able to drive a high-fidelity face model to perform complex facial motion from a cellphone camera without requiring any labeled data from the new domain.
Cycle consistency is widely used for face editing. However, we observe that the generator tends to find a tricky way to hide information from the original image to satisfy the constraint of cycle consistency, making it impossible to maintain the rich details (e.g., wrinkles and moles) of non-editing areas. In this work, we propose a simple yet effective method named HifaFace to address the above-mentioned problem from two perspectives. First, we relieve the pressure of the generator to synthesize rich details by directly feeding the high-frequency information of the input image into the end of the generator. Second, we adopt an additional discriminator to encourage the generator to synthesize rich details. Specifically, we apply wavelet transformation to transform the image into multi-frequency domains, among which the high-frequency parts can be used to recover the rich details. We also notice that a fine-grained and wider-range control for the attribute is of great importance for face editing. To achieve this goal, we propose a novel attribute regression loss. Powered by the proposed framework, we achieve high-fidelity and arbitrary face editing, outperforming other state-of-the-art approaches.
Recent studies have shown remarkable success in face manipulation task with the advance of GANs and VAEs paradigms, but the outputs are sometimes limited to low-resolution and lack of diversity. In this work, we propose Additive Focal Variational A uto-encoder (AF-VAE), a novel approach that can arbitrarily manipulate high-resolution face images using a simple yet effective model and only weak supervision of reconstruction and KL divergence losses. First, a novel additive Gaussian Mixture assumption is introduced with an unsupervised clustering mechanism in the structural latent space, which endows better disentanglement and boosts multi-modal representation with external memory. Second, to improve the perceptual quality of synthesized results, two simple strategies in architecture design are further tailored and discussed on the behavior of Human Visual System (HVS) for the first time, allowing for fine control over the model complexity and sample quality. Human opinion studies and new state-of-the-art Inception Score (IS) / Frechet Inception Distance (FID) demonstrate the superiority of our approach over existing algorithms, advancing both the fidelity and extremity of face manipulation task.
Unsupervised domain adaptation has been widely adopted to generalize models for unlabeled data in a target domain, given labeled data in a source domain, whose data distributions differ from the target domain. However, existing works are inapplicable to face recognition under privacy constraints because they require sharing sensitive face images between two domains. To address this problem, we propose a novel unsupervised federated face recognition approach (FedFR). FedFR improves the performance in the target domain by iteratively aggregating knowledge from the source domain through federated learning. It protects data privacy by transferring models instead of raw data between domains. Besides, we propose a new domain constraint loss (DCL) to regularize source domain training. DCL suppresses the data volume dominance of the source domain. We also enhance a hierarchical clustering algorithm to predict pseudo labels for the unlabeled target domain accurately. To this end, FedFR forms an end-to-end training pipeline: (1) pre-train in the source domain; (2) predict pseudo labels by clustering in the target domain; (3) conduct domain-constrained federated learning across two domains. Extensive experiments and analysis on two newly constructed benchmarks demonstrate the effectiveness of FedFR. It outperforms the baseline and classic methods in the target domain by over 4% on the more realistic benchmark. We believe that FedFR will shed light on applying federated learning to more computer vision tasks under privacy constraints.
Face detection in low light scenarios is challenging but vital to many practical applications, e.g., surveillance video, autonomous driving at night. Most existing face detectors heavily rely on extensive annotations, while collecting data is time-co nsuming and laborious. To reduce the burden of building new datasets for low light conditions, we make full use of existing normal light data and explore how to adapt face detectors from normal light to low light. The challenge of this task is that the gap between normal and low light is too huge and complex for both pixel-level and object-level. Therefore, most existing low-light enhancement and adaptation methods do not achieve desirable performance. To address the issue, we propose a joint High-Low Adaptation (HLA) framework. Through a bidirectional low-level adaptation and multi-task high-level adaptation scheme, our HLA-Face outperforms state-of-the-art methods even without using dark face labels for training. Our project is publicly available at https://daooshee.github.io/HLA-Face-Website/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا