ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-triggered radio detection and identification of cosmic air showers with the OVRO-LWA

109   0   0.0 ( 0 )
 نشر من قبل Andrew Romero-Wolf
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A successful ground array Radio Frequency (RF)-only self-trigger on 10 high-energy cosmic ray events is demonstrated with 256 dual-polarization antennas of the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). This RF-only capability is predicated on novel techniques for Radio Frequency Interference (RFI) identification and mitigation with an analysis efficiency of 45% for shower-driven events with a Signal-to-noise ratio $gtrsim$ 5 against the galactic background noise power of individual antennas. This technique enables more efficient detection of cosmic rays over a wider range of zenith angles than possible via triggers from in-situ particle detectors and can be easily adapted by neutrino experiments relying on RF-only detection. This paper discusses the system design, RFI characterization and mitigation techniques, and initial results from 10 cosmic ray events identified within a 40-hour observing window. A design for a future optimized commensal cosmic-ray detector for the OVRO-LWA is presented, as well as recommendations for developing a similar capability for other experiments -- these designs either reduce data-rate or increase sensitivity by an order of magnitude for many configurations of radio instruments.

قيم البحث

اقرأ أيضاً

The study of the ultra-high energy cosmic rays, neutrinos and gamma rays is one of the most important challenges in astrophysics. The low fluxes of these particles do not allow one to detect them directly. The detection is performed by the measuring of the air-showers produced by the primary particles in the Earths atmosphere. A radio detection of ultra-high energy air-showers is a cost-effective technique that provides a precise reconstruction of the parameters of primary particle and almost full duty cycle in comparison with other methods. The main challenge of the modern radio detectors is the development of efficient self-trigger technology, resistant to high-level background and radio frequency interference. Most of the modern radio detectors receive trigger generated by either particle or optical detectors. The development of the self trigger for the radio detector will significantly simplify the operation of existing instruments and allow one to access the main advantages of the radio method as well as open the way to the construction of the next generation of large-scale radio detectors. In the present work we discuss our progress in the solution of this problem, particularly the classification of broadband pulses.
88 - Tim Huege 2017
Radio detection of extensive air showers initiated in the Earths atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air shower s is well-understood, and analysis techniques have been developed to determine the arrival direction, the energy and an estimate for the mass of the primary particle from the radio measurements. The achieved resolutions are competitive with those of more traditional techniques. In this article, I shortly review the most important achievements and discuss the potential for future applications.
Studies of the radio detection of Extensive Air Showers is the goal of the demonstrative experiment CODALEMA. Previous analysis have demonstrated that detection around $5.10^{16}$ eV was achieved with this set-up. New results allow for the first time to study the topology of the electric field associated to EAS events on a event by event basis.
Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the ra dio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.
The ARIANNA hexagonal radio array (HRA) is an experiment in its pilot phase designed to detect cosmogenic neutrinos of energies above 10^16 eV. The most neutrino-like background stems from the radio emission of air showers. This article reports on de dicated efforts of simulating and detecting the signals of cosmic rays. A description of the fully radio self-triggered data-set, the properties of the detected air shower signals in the frequency range of unit[100-500]{MHz} and the consequences for neutrino detection are given. 38 air shower signals are identified by their distinct waveform characteristics, are in good agreement with simulations and their signals provide evidence that neutrino-induced radio signals will be distinguishable with high efficiency in ARIANNA. The cosmic ray flux at a mean energy of $6.5^{+1.2}_{-1.0}times10^{17}$ eV is measured to be $1.1^{+1.0}_{-0.7}times10^{-16}$ eV$^{-1}$km$^{-2}$sr$^{-1}$yr$^{-1}$ and one five-fold coincident event is used to illustrate the capabilities of the ARIANNA detector to reconstruct arrival direction and energy of air showers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا