ﻻ يوجد ملخص باللغة العربية
Radio detection of extensive air showers initiated in the Earths atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air showers is well-understood, and analysis techniques have been developed to determine the arrival direction, the energy and an estimate for the mass of the primary particle from the radio measurements. The achieved resolutions are competitive with those of more traditional techniques. In this article, I shortly review the most important achievements and discuss the potential for future applications.
The principle and performances of the CODALEMA experimental device, set up to study the possibility of high energy cosmic rays radio detection, are presented. Radio transient signals associated to cosmic rays have been identified, for which arrival d
Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Statio
The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV ele
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely o
One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector.