ﻻ يوجد ملخص باللغة العربية
The interaction between atoms in a two-component Bose-Einstein condensate (BEC) is effectively modulated by the Rabi oscillation. This periodic modulation of the effective interaction is shown to generate Faraday patterns through parametric resonance. We show that there are multiple resonances arising from the density and spin waves in a two-component BEC, and investigate the interplay between the Faraday-pattern formation and the phase separation.
Generation of wave structures by a two-dimensional object (laser beam) moving in a two-dimensional two-component Bose-Einstein condensate with a velocity greater than both sound velocities of the mixture is studied by means of analytical methods and
We show theoretically that periodic density patterns are stabilized in two counter-propagating Bose-Einstein condensates of atoms in different hyperfine states under Rabi coupling. In the presence of coupling, the relative velocity between two compon
We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency and modulation strength. Longitudinal surface waves
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally
Understanding quantum dynamics in a two-dimensional Bose-Einstein condensate (BEC) relies on understanding how vortices interact with each others microscopically and with local imperfections of the potential which confines the condensate. Within a sy