ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

110   0   0.0 ( 0 )
 نشر من قبل Russell Bisset
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy - a remarkable property given that spin fluctuations are normally suppressed (anti-bunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.


قيم البحث

اقرأ أيضاً

87 - Hiromitsu Takeuchi 2020
We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein condensates with small positive quadratic Zeeman effec t. The new vortex is considered the Joukowski transform of a conventional vortex. Its oblateness grows when the Zeeman length exceeds the spin healing length. This structure is sustained by balancing the hydrodynamic potential and the elasticity of a soliton connecting two spin spots, which are observable by in situ magnetization imaging. The theoretical analysis clearly defines the difference between half quantum vortices of the polar and antiferromagnetic phases in spin-1 condensates.
We study experimentally and numerically the quasi-bidimensional transport of a $^{87}$Rb Bose-Einstein condensate launched with a velocity $v_0$ inside a disordered optical potential created by a speckle pattern. A time-of-flight analysis reveals a p ronounced enhanced density peak in the backscattering direction $-v_0$, a feature reminiscent of coherent backscattering. Detailed numerical simulations indicate however that other effects also contribute to this enhancement, including a backscattering echo due to the position-momentum correlations of the initial wave packet.
254 - Li Chen , Yunbo Zhang , 2020
We study the spin squeezing in a spin-1/2 Bose-Einstein condensates (BEC) with Raman induced spin-orbit coupling (SOC). Under the condition of two-photon resonance and weak Raman coupling strength, the system possesses two degenerate ground states, u sing which we construct an effective two-mode model. The Hamiltonian of the two-mode model takes the form of the one-axis-twisting Hamiltonian which is known to generate spin squeezing. More importantly, we show that the SOC provides a convenient control knob to adjust the spin nonlinearity responsible for spin squeezing. Specifically, the spin nonlinearity strength can be tuned to be comparable to the two-body density-density interaction, hence is much larger than the intrinsic spin-dependent interaction strength in conventional two-component BEC systems such as $^{87}$Rb and $^{23}$Na in the absence of the SOC. We confirm the spin squeezing by carrying out a fully beyond-mean-field numerical calculation using the truncated Wigner method. Additionally, the experimental implementation is also discussed.
We calculate the Bose-Einstein condensate (BEC) occupation statistics vs. the interparticle interaction in a dilute gas with a nonuniform condensate in a box trap within the Bogoliubov approach. The results are compared against the previously found B EC-occupation statistics in (i) an ideal gas and (ii) a weakly interacting gas with a uniform condensate. In particular, we reveal and explicitly describe an appearance of a nontrivial transition from the ideal gas to the Thomas-Fermi regime. The results include finding the main regimes of the BEC statistics - the anomalous non-Gaussian thermally-dominated fluctuations and the Gaussian quantum-dominated fluctuations - as well as a crossover between them and their manifestations in a mesoscopic system. Remarkably, we show that the effect of the boundary conditions, imposed at the box trap, on the BEC fluctuations does not vanish in the thermodynamic limit of a macroscopic system even in the presence of the interparticle interactions. Finally, we discuss a challenging problem of an experimental verification of the theory of the BEC fluctuations addressing a much deeper level of the many-body statistical physics than usually studied quantities related to the mean condensate occupation.
We have measured the quantum depletion of an interacting homogeneous Bose-Einstein condensate, and confirmed the 70-year old theory of N.N. Bogoliubov. The observed condensate depletion is reversibly tuneable by changing the strength of the interpart icle interactions. Our atomic homogeneous condensate is produced in an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction probed by coherent two-photon Bragg scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا