ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain Adaptation for Enterprise Email Search

60   0   0.0 ( 0 )
 نشر من قبل Brandon Tran
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the enterprise email search setting, the same search engine often powers multiple enterprises from various industries: technology, education, manufacturing, etc. However, using the same global ranking model across different enterprises may result in suboptimal search quality, due to the corpora differences and distinct information needs. On the other hand, training an individual ranking model for each enterprise may be infeasible, especially for smaller institutions with limited data. To address this data challenge, in this paper we propose a domain adaptation approach that fine-tunes the global model to each individual enterprise. In particular, we propose a novel application of the Maximum Mean Discrepancy (MMD) approach to information retrieval, which attempts to bridge the gap between the global data distribution and the data distribution for a given individual enterprise. We conduct a comprehensive set of experiments on a large-scale email search engine, and demonstrate that the MMD approach consistently improves the search quality for multiple individual domains, both in comparison to the global ranking model, as well as several competitive domain adaptation baselines including adversarial learning methods.



قيم البحث

اقرأ أيضاً

An effective email search engine can facilitate users search tasks and improve their communication efficiency. Users could have varied preferences on various ranking signals of an email, such as relevance and recency based on their tasks at hand and even their jobs. Thus a uniform matching pattern is not optimal for all users. Instead, an effective email ranker should conduct personalized ranking by taking users characteristics into account. Existing studies have explored user characteristics from various angles to make email search results personalized. However, little attention has been given to users search history for characterizing users. Although users historical behaviors have been shown to be beneficial as context in Web search, their effect in email search has not been studied and remains unknown. Given these observations, we propose to leverage user search history as query context to characterize users and build a context-aware ranking model for email search. In contrast to previous context-dependent ranking techniques that are based on raw texts, we use ranking features in the search history. This frees us from potential privacy leakage while giving a better generalization power to unseen users. Accordingly, we propose a context-dependent neural ranking model (CNRM) that encodes the ranking features in users search history as query context and show that it can significantly outperform the baseline neural model without using the context. We also investigate the benefit of the query context vectors obtained from CNRM on the state-of-the-art learning-to-rank model LambdaMart by clustering the vectors and incorporating the cluster information. Experimental results show that significantly better results can be achieved on LambdaMart as well, indicating that the query clusters can characterize different users and effectively turn the ranking model personalized.
In personal email search, user queries often impose different requirements on different aspects of the retrieved emails. For example, the query my recent flight to the US requires emails to be ranked based on both textual contents and recency of the email documents, while other queries such as medical history do not impose any constraints on the recency of the email. Recent deep learning-to-rank models for personal email search often directly concatenate dense numerical features (e.g., document age) with embedded sparse features (e.g., n-gram embeddings). In this paper, we first show with a set of experiments on synthetic datasets that direct concatenation of dense and sparse features does not lead to the optimal search performance of deep neural ranking models. To effectively incorporate both sparse and dense email features into personal email search ranking, we propose a novel neural model, SepAttn. SepAttn first builds two separate neural models to learn from sparse and dense features respectively, and then applies an attention mechanism at the prediction level to derive the final prediction from these two models. We conduct a comprehensive set of experiments on a large-scale email search dataset, and demonstrate that our SepAttn model consistently improves the search quality over the baseline models.
Pre-trained transformers have recently clinched top spots in the gamut of natural language tasks and pioneered solutions to software engineering tasks. Even information retrieval has not been immune to the charm of the transformer, though their large size and cost is generally a barrier to deployment. While there has been much work in streamlining, caching, and modifying transformer architectures for production, here we explore a new direction: distilling a large pre-trained translation model into a lightweight bi-encoder which can be efficiently cached and queried. We argue from a probabilistic perspective that sequence-to-sequence models are a conceptually ideal---albeit highly impractical---retriever. We derive a new distillation objective, implementing it as a data augmentation scheme. Using natural language source code search as a case study for cross-domain search, we demonstrate the validity of this idea by significantly improving upon the current leader of the CodeSearchNet challenge, a recent natural language code search benchmark.
User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.
94 - Yichen Li , Xingchao Peng 2020
Deep networks have been used to learn transferable representations for domain adaptation. Existing deep domain adaptation methods systematically employ popular hand-crafted networks designed specifically for image-classification tasks, leading to sub -optimal domain adaptation performance. In this paper, we present Neural Architecture Search for Domain Adaptation (NASDA), a principle framework that leverages differentiable neural architecture search to derive the optimal network architecture for domain adaptation task. NASDA is designed with two novel training strategies: neural architecture search with multi-kernel Maximum Mean Discrepancy to derive the optimal architecture, and adversarial training between a feature generator and a batch of classifiers to consolidate the feature generator. We demonstrate experimentally that NASDA leads to state-of-the-art performance on several domain adaptation benchmarks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا