ﻻ يوجد ملخص باللغة العربية
An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malliavin derivatives. Our goal is to extend it to random variables which are not Malliavin differentiable. To this end, we make use of Itos formula, instead of Malliavin calculus. As an application to mathematical finance, we shall give an explicit representation of locally risk-minimizing strategy of digital options for exponential Levy models. Since the payoff of digital options is described by an indicator function, we also discuss the Malliavin differentiability of indicator functions with respect to Levy processes.
In this paper, we construct a Malliavin derivative for functionals of square-integrable Levy processes and derive a Clark-Ocone formula. The Malliavin derivative is defined via chaos expansions involving stochastic integrals with respect to Brownian
The objective is to provide an Al`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al`os (2012) introduced
Duality plays an important role in population genetics. It can relate results from forwards-in-time models of allele frequency evolution with those of backwards-in-time genealogical models; a well known example is the duality between the Wright-Fishe
We focus on mean-variance hedging problem for models whose asset price follows an exponential additive process. Some representations of mean-variance hedging strategies for jump type models have already been suggested, but none is suited to develop n
Replacing Black-Scholes driving process, Brownian motion, with fractional Brownian motion allows for incorporation of a past dependency of stock prices but faces a few major downfalls, including the occurrence of arbitrage when implemented in the fin