ﻻ يوجد ملخص باللغة العربية
In this paper, we construct a Malliavin derivative for functionals of square-integrable Levy processes and derive a Clark-Ocone formula. The Malliavin derivative is defined via chaos expansions involving stochastic integrals with respect to Brownian motion and Poisson random measure. As an illustration, we compute the explicit martingale representation for the maximum of a Levy process.
An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malli
In this paper, following Nourdin-Peccatis methodology, we combine the Malliavin calculus and Steins method to provide general bounds on the Wasserstein distance between functionals of a compound Hawkes process and a given Gaussian density. To achieve
In a 2006 article (cite{A1}), Allouba gave his quadratic covariation differentiation theory for It^os integral calculus. He defined the derivative of a semimartingale with respect to a Brownian motion as the time derivative of their quadratic covaria
We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by P
A version of the saddle point method is developed, which allows one to describe exactly the asymptotic behavior of distribution densities of Levy driven stochastic integrals with deterministic kernels. Exact asymptotic behavior is established for (a)