ﻻ يوجد ملخص باللغة العربية
Based on a two-orbital honeycomb lattice model and random phase approximation, we investigate the pairing symmetry of the Ni-based transition-metal trichalcogenide. We find that an I-wave (A2g) state and a chiral d-wave state are dominant and nearly degenerate for typical electron and hole dopings. These two states carry nontrivial topological properties, which are manifested by the presence of chiral edge states in the d+id-wave state and dispersionless Andreev bound state at zero energy in the I-wave state. Ni-based transition-metal trichalcogenides provide us a new platform to study the exotic phenomena emerged from electron-electron correlation effects.
We investigate the electronic physics of layered Ni-based trichalcogenide NiPX$_3$ (X=S, Se), a member of transition-metal trichalcogenides (TMTs) with the chemical formula, ABX$_3$. These Ni-based TMTs distinguish themselves from other TMTs as their
A comprehensive first principles study on the electronic topological transition in a number of 122 family of Fe based superconductors is presented. Doping as well as temperature driven Lifshitz transitions are found from first principles simulations
We study possible superconducting states in transition metal dichalcogenide (TMD) monolayers, assuming an on-site pairing potential that includes both intra- and inter-orbital terms. We find that if the mirror symmetry with respect to the systems pla
We investigate the currently debated issue concerning whether transition metal substitutions dope carriers in iron based superconductors. From first-principles calculations of the configuration-averaged spectral function of BaFe$_2$As$_2$ with disord
In iron-based superconductors, band inversion of $d$- and $p$-orbitals yields Dirac semimetallic states. We theoretically investigate their topological properties in normal and superconducting phases, based on the tight-binding model involving full s