ﻻ يوجد ملخص باللغة العربية
We investigate the currently debated issue concerning whether transition metal substitutions dope carriers in iron based superconductors. From first-principles calculations of the configuration-averaged spectral function of BaFe$_2$As$_2$ with disordered Co/Zn substitutions of Fe, important doping effects are found beyond merely changing the carrier density. While the chemical potential shifts suggest doping of a large amount of carriers, a reduction of the coherent carrier density is found due to the loss of spectral weight. Therefore, none of the change in the Fermi surface, density of states, or charge distribution can be solely used for counting doped coherent carriers, let alone presenting the full effects of the disordered substitutions. Our study highlights the necessity of including disorder effects in the studies of doped materials in general.
Following the discovery of the potentially very high temperature superconductivity in monolayer FeSe we investigate the doping effect of Se vacancies in these materials. We find that Se vacancies pull a vacancy centered orbital below the Fermi energy
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and
Based on a two-orbital honeycomb lattice model and random phase approximation, we investigate the pairing symmetry of the Ni-based transition-metal trichalcogenide. We find that an I-wave (A2g) state and a chiral d-wave state are dominant and nearly
Iron-based superconducting layered compounds have the second highest transition temperature after cuprate superconductors. Their discovery is a milestone in the history of high-temperature superconductivity and will have profound implications for hig
We examine the relevance of several major material-dependent parameters to the magnetic softness in iron-base superconductors by first-principles electronic structure analysis of their parent compounds. The results are explained in the spin-fermion m