ﻻ يوجد ملخص باللغة العربية
Due to the lack of free neutron targets, studies of the structure of the neutron are typically made by scattering electrons from either $^2$H or $^3$He targets. In order to extract useful neutron information from a $^3$He target, one must understand how the neutron in a $^3$He system differs from a free neutron by taking into account nuclear effects such as final state interactions and meson exchange currents. The target single spin asymmetry $A_y^0$ is an ideal probe of such effects, as any deviation from zero indicates effects beyond plane wave impulse approximation. New measurements of the target single spin asymmetry $A_y^0$ at $Q^2$ of 0.46 and 0.96 (GeV/$c)^2$ were made at Jefferson Lab using the quasi-elastic $^3mathrm{He}^{uparrow}(e,en)$ reaction. Our measured asymmetry decreases rapidly, from $>20%$ at $Q^2=0.46$ (GeV/$c)^2$ to nearly zero at $Q^2=0.96$ (GeV$/c)^2$, demonstrating the fall-off of the reaction mechanism effects as $Q^2$ increases. We also observed a small $epsilon$-dependent increase in $A_y^0$ compared to previous measurements, particularly at moderate $Q^2$. This indicates that upcoming high $Q^2$ measurements from the Jefferson Lab 12 GeV program can cleanly probe neutron structure from polarized $^3$He using plane wave impulse approximation.
We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{uparrow}(e,e^prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-re
We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{uparrow}left(e,e right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry
Quasielastic $^{12}$C$(e,ep)$ scattering was measured at space-like 4-momentum transfer squared $Q^2$~=~8, 9.4, 11.4, and 14.2 (GeV/c)$^2$, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measu
The differential cross sections sigma_0=sigma_T+epsilon sigma_L, sigma_{LT}, and sigma_{TT} of pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-mome
First data on coherent threshold pi^0 electroproduction from the deuteron taken by the A1 Collaboration at the Mainz Microtron MAMI are presented. At a four-momentum transfer of q^2=-0.1 GeV^2/c^2 the full solid angle was covered up to a center-of-ma