ﻻ يوجد ملخص باللغة العربية
We present a novel Structure from Motion pipeline that is capable of reconstructing accurate camera poses for panorama-style video capture without prior camera intrinsic calibration. While panorama-style capture is common and convenient, previous reconstruction methods fail to obtain accurate reconstructions due to the rotation-dominant motion and small baseline between views. Our method is built on the assumption that the camera motion approximately corresponds to motion on a sphere, and we introduce three novel relative pose methods to estimate the fundamental matrix and camera distortion for spherical motion. These solvers are efficient and robust, and provide an excellent initialization for bundle adjustment. A soft prior on the camera poses is used to discourage large deviations from the spherical motion assumption when performing bundle adjustment, which allows cameras to remain properly constrained for optimization in the absence of well-triangulated 3D points. To validate the effectiveness of the proposed method we evaluate our approach on both synthetic and real-world data, and demonstrate that camera poses are accurate enough for multiview stereo.
Recent advances in image-based human pose estimation make it possible to capture 3D human motion from a single RGB video. However, the inherent depth ambiguity and self-occlusion in a single view prohibit the recovery of as high-quality motion as mul
We propose a new loss function, called motion loss, for the problem of monocular 3D Human pose estimation from 2D pose. In computing motion loss, a simple yet effective representation for keypoint motion, called pairwise motion encoding, is introduce
We present a system for learning motion of independently moving objects from stereo videos. The only human annotation used in our system are 2D object bounding boxes which introduce the notion of objects to our system. Unlike prior learning based wor
Static image action recognition, which aims to recognize action based on a single image, usually relies on expensive human labeling effort such as adequate labeled action images and large-scale labeled image dataset. In contrast, abundant unlabeled v
In this paper, we present a new feature representation for first-person videos. In first-person video understanding (e.g., activity recognition), it is very important to capture both entire scene dynamics (i.e., egomotion) and salient local motion ob