ﻻ يوجد ملخص باللغة العربية
The superconducting state of metals has long provided a classic example of particle-hole symmetry (PHS) at low energy. Fermionic self-energy results based on first principles theory for the electron-phonon coupling in H$_3$S presented here illustrate strong PHS-breaking dynamics arising from the underlying sharp structure in the fermionic density of states. Thus H$_3$S is not only the superconductor with the highest critical temperature $T_c$ (through 2018), but its low energy, low temperature properties deviate strongly from textbook behavior. The minor momentum and band dependence of the fermionic self-energy allows evaluation of the momentum-resolved and zone-averaged spectral densities and interacting thermal distribution function, all of which clearly illustrate strong particle-hole asymmetry.
In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (Tc), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors above Tc,
The field-orientation dependent thermal conductivity of the heavy-fermion superconductor UPt$_3$ was measured down to very low temperatures and under magnetic fields throughout three distinct superconducting phases: A, B, and C phases. In the C phase
Recently discovered kagome superconductors AV3Sb5 (A=K, Rb, Cs) provide a fresh opportunity to realize and study correlation-driven electronic phenomena on a kagome lattice. The observation of a 2a0 by 2a0 charge density wave (CDW) in the normal stat
The single helical Fermi surface on the surface state of three-dimensional topological insulator Bi2Se3 is constrained by the time-reversal invariant bulk topology to possess a spin-singlet superconducting pairing symmetry. In fact, the Cu-doped, and
We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Trans