ﻻ يوجد ملخص باللغة العربية
Naive human T cells are produced in the thymus, which atrophies abruptly and severely in response to physical or psychological stress. To understand how an instance of stress affects the size and diversity of the peripheral naive T cell pool, we derive a mean-field autonomous ODE model of T cell replenishment that allows us to track the clone abundance distribution (the mean number of different TCRs each represented by a specific number of cells). We identify equilibrium solutions that arise at different rates of T cell production, and derive analytic approximations to the dominant eigenvalues and eigenvectors of the problem linearized about these equilibria. From the forms of the eigenvalues and eigenvectors, we estimate rates at which counts of clones of different sizes converge to and depart from equilibrium values--that is, how the number of clones of different sizes adjust to the changing rate of T cell production. Under most physiologically realistic realizations of our model, the dominant eigenvalue (representing the slowest dynamics of the clone abundance distribution) scales as a power law in the thymic output for low output levels, but saturates at higher T cell production rates. Our analysis provides a framework for quantitatively understanding how the clone abundance distributions evolve under small changes in the overall T cell production rate by the thymus.
The set of T cells that express the same T cell receptor (TCR) sequence represents a T cell clone. The number of different naive T cell clones in an organism reflects the number of different T cell receptors (TCRs) arising from recombination of the V
The human adaptive immune response is known to weaken in advanced age, resulting in increased severity of pathogen-born illness, poor vaccine efficacy, and a higher prevalence of cancer in the elderly. Age-related erosion of the T-cell compartment ha
We are frequently faced with a large collection of antibodies, and want to select those with highest affinity for their cognate antigen. When developing a first-line therapeutic for a novel pathogen, for instance, we might look for such antibodies in
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spread
The collection of immunoglobulin genes in an individuals germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several h