ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitary wave fission of a large disturbance in a viscous fluid conduit

205   0   0.0 ( 0 )
 نشر من قبل Mark Hoefer Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a theoretical and experimental study of the long-standing fluid mechanics problem involving the temporal resolution of a large, localised initial disturbance into a sequence of solitary waves. This problem is of fundamental importance in a range of applications including tsunami and internal ocean wave modelling. This study is performed in the context of the viscous fluid conduit system-the driven, cylindrical, free interface between two miscible Stokes fluids with high viscosity contrast. Due to buoyancy induced nonlinear self-steepening balanced by stress induced interfacial dispersion, the disturbance evolves into a slowly modulated wavetrain and further, into a sequence of solitary waves. An extension of Whitham modulation theory, termed the solitary wave resolution method, is used to resolve the fission of an initial disturbance into solitary waves. The developed theory predicts the relationship between the initial disturbances profile, the number of emergent solitary waves, and their amplitude distribution, quantifying an extension of the well-known soliton resolution conjecture from integrable systems to non-integrable systems that often provide a more accurate modelling of physical systems. The theoretical predictions for the fluid conduit system are confirmed both numerically and experimentally. The number of observed solitary waves is consistently within 1-2 waves of the prediction, and the amplitude distribution shows remarkable agreement. Universal properties of solitary wave fission in other fluid dynamics problems are identified.



قيم البحث

اقرأ أيضاً

361 - J.D. Carter , A. Govan 2015
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl y viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
The driven, cylindrical, free interface between two miscible, Stokes fluids with high viscosity contrast have been shown to exhibit dispersive hydrodynamics. A hallmark feature of dispersive hydrodynamic media is the dispersive resolution of wavebrea king that results in a dispersive shock wave. In the context of the viscous fluid conduit system, the present work introduces a simple, practical method to precisely control the location, time, and spatial profile of wavebreaking in dispersive hydrodynamic systems with only boundary control. The method is based on tracking the dispersionless characteristics backward from the desired wavebreaking profile to the boundary. In addition to the generation of approximately step-like Riemann and box problems, the method is generalized to other, approximately piecewise-linear dispersive hydrodynamic profiles including the triangle wave and N-wave. A definition of dispersive hydrodynamic wavebreaking is used to obtain quantitative agreement between the predicted location and time of wavebreaking, viscous fluid conduit experiment, and direct numerical simulations for a range of flow conditions. Observed space-time characteristics also agree with triangle and N-wave predictions. The characteristic boundary control method introduced here enables the experimental investigation of a variety of wavebreaking profiles and is expected to be useful in other dispersive hydrodynamic media. As an application of this approach, soliton fission from a large, box-like disturbance is observed both experimentally and numerically, motivating future analytical treatment.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi scous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
90 - V. Grassi , R.A. Leo , G. Soliani 2001
The Navier-Stokes-Fourier model for a 3D thermoconducting viscous fluid, where the evolution equation for the temperature T contains a term proportional to the rate of energy dissipation, is investigated analitically at the light of the rotational in variance property. Two cases are considered: the Couette flow and a flow with a radial velocity between two rotating impermeable and porous coaxial cylinders, respectively. In both cases, we show the existence of a maximum value of T, T_max, when the difference of temperature Delta T=T_2-T_1 on the surfaces of the cylinders is assigned. The role of T_max is discussed in the context of different physical situations.
The viscous drag on a slender rod by a wall is important to many biological and industrial systems. This drag critically depends on the separation between the rod and the wall and can be approximated asymptotically in specific regimes, namely far fro m, or very close to, the wall, but is typically determined numerically for general separations. In this note we determine an asymptotic representation of the local drag for a slender rod parallel to a wall which is valid for all separations. This is possible through matching the behaviour of a rod close to the wall and a rod far from the wall. We show that the leading order drag in both these regimes has been known since 1981 and that they can used to produce a composite representation of the drag which is valid for all separations. This is in contrast to a sphere above a wall, where no simple uniformly valid representation exists. We estimate the error on this composite representation as the separation increases, discuss how the results could be used as resistive-force theory and demonstrate their use on a two-hinged swimmer above a wall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا