ﻻ يوجد ملخص باللغة العربية
We have studied the shadows of a Schwarzschild black hole surrounded by a Bach-Weyl ring through the backward ray-tracing method. The presence of Bach-Weyl ring leads to that the photon dynamical system is non-integrable and then chaos would appear in the photon motion, which affects sharply the black hole shadow. The size and shape the black hole shadow depend on the black hole parameter, the Bach-Weyl ring mass and the Weyl radius between black hole and ring. Some self-similar fractal structures also appear in the black hole shadow, which originates from the chaotic lensing. We also study the change of the image of Bach-Weyl ring with the ring mass and the Weyl radius. Finally, we analyze the invariant manifolds of Lyapunov orbits near the fixed points and discuss further the formation of the shadow of a Schwarzschild black hole with Bach-Weyl ring.
We consider a static, axially symmetric spacetime describing the superposition of a Schwarzschild black hole (BH) with a thin and heavy accretion disk. The BH-disk configuration is a solution of the Einstein field equations within the Weyl class. The
We consider quantum corrections for the Schwarzschild black hole metric by using the generalized uncertainty principle (GUP) to investigate quasinormal modes, shadow and their relationship in the eikonal limit. We calculate the quasinormal frequencie
We study the collision of two massive particles with non-zero intrinsic spin moving in the equatorial plane in the background of a Schwarzschild black hole surrounded by quintessential matter field (SBHQ). For the quintessential matter equation of st
Basing on the ideas used by Kiselev, we study the Hayward black hole surrounded by quintessence. By setting for the quintessence state parameter at the special case of $omega=-frac{2}{3}$, using the metric of the black hole surrounded by quintessence
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evol