ﻻ يوجد ملخص باللغة العربية
We study the collision of two massive particles with non-zero intrinsic spin moving in the equatorial plane in the background of a Schwarzschild black hole surrounded by quintessential matter field (SBHQ). For the quintessential matter equation of state (EOS) parameter, we assume three different values. It is shown that for collisions outside the event horizon, but very close to it, the centre-of-mass energy ($E_{rm CM}$) can grow without bound if exactly one of the colliding particles is what we call near-critical, i.e., if its constants of motion are fine tuned such that the time component of its four-momentum becomes very small at the horizon. In all other cases, $E_{rm CM}$ only diverges behind the horizon if we respect the M{o}ller limit on the spin of the particles. We also discuss radial turning points and constraints resulting from the requirement of subluminal motion of the spinning particles.
We have studied the shadows of a Schwarzschild black hole surrounded by a Bach-Weyl ring through the backward ray-tracing method. The presence of Bach-Weyl ring leads to that the photon dynamical system is non-integrable and then chaos would appear i
Basing on the ideas used by Kiselev, we study the Hayward black hole surrounded by quintessence. By setting for the quintessence state parameter at the special case of $omega=-frac{2}{3}$, using the metric of the black hole surrounded by quintessence
The Rastall gravity is the modified Einstein general relativity, in which the energy-momentum conservation law is generalized to $T^{mu u}_{~~;mu}=lambda R^{, u}$. In this work, we derive the Kerr-Newman-AdS (KN-AdS) black hole solutions surrounded b
The Penrose process of an extremal braneworld black hole is studied. We analyze the Penrose process by two massive spinning particles collide near the horizon. By calculating the maximum energy extraction efficiency of this process, it turns out that
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evol