ﻻ يوجد ملخص باللغة العربية
We present a method of calculating crystal field coefficients of rare-earth/transition-metal (RE-TM) magnets within density-functional theory (DFT). The principal idea of the method is to calculate the crystal field potential of the yttrium analogue (Y-analogue) of the RE-TM magnet, i.e. the material where the lanthanide elements have been substituted with yttrium. The advantage of dealing with Y-analogues is that the methodological and conceptual difficulties associated with treating the highly-localized 4f electrons in DFT are avoided, whilst the nominal valence electronic structure principally responsible for the crystal field is preserved. In order to correctly describe the crystal field potential in the core region of the atoms we use the projector-augmented wave formalism of DFT, which allows the reconstruction of the full charge density and electrostatic potential. The Y-analogue crystal field potentials are combined with radial 4f charge densities obtained in self-interaction-corrected calculations on the lanthanides to obtain crystal field coefficients. We demonstrate our method on a test set of 10 materials comprising 9 RE-TM magnets and elemental Tb. We show that the calculated easy directions of magnetization agree with experimental observations, including a correct description of the anisotropy within the basal plane of Tb and NdCo$_5$. We further show that the Y-analogue calculations generally agree quantitatively with previous calculations using the open-core approximation to treat the 4f electrons, and argue that our simple approach may be useful for large-scale computational screening of new magnetic materials.
Atomic-scale computational modeling of technologically relevant permanent magnetic materials faces two key challenges. First, a materials magnetic properties depend sensitively on temperature, so the calculations must account for thermally induced ma
The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently-introduced approach based on dens
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wav
We present valence electron Compton profiles calculated within the density-functional theory using the all-electron full-potential projector augmented-wave method (PAW). Our results for covalent (Si), metallic (Li, Al) and hydrogen-bonded ((H_2O)_2)
In this paper the relationship between the density functional theory of freezing and phase field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy f