ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing general relativity with accretion onto compact objects

145   0   0.0 ( 0 )
 نشر من قبل Ilaria Caiazzo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray emission of neutron stars and black holes presents a rich phenomenology that can lead us to a better understanding of their nature and to address more general physics questions: Does general relativity apply in the strong gravity regime? Is spacetime around black holes described by the Kerr metric? This white paper considers how we can investigate these questions by studying reverberation mapping and quasi-periodic oscillations in accreting systems with a combination of high-spectral and high-timing resolution. In the near future, we will be able to study compact objects in the X-rays in a new way: advancements in transition-edge sensors (TES) technology will allow for electron-volt-resolution spectroscopy combined with nanoseconds-precision timing.

قيم البحث

اقرأ أيضاً

We introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic stars. We present the mass-radius ($M-R$) diagram for various families of models, showing that elasticity contributes to increase the maximum mass and the compactness up to a ${cal O}(10%)$ factor, thus supporting compact stars with mass well above two solar masses. Some of these elastic stars can reach compactness as high as $GM/(c^2R)approx 0.35$ while remaining stable under radial perturbations and satisfying all energy conditions and subluminal wave propagation, thus being physically viable models of stars with a light ring. We provide numerical evidence that radial instability occurs for central densities larger than that corresponding to the maximum mass, as in the perfect-fluid case. Elasticity may be a key ingredient to build consistent models of exotic ultracompact objects and black-hole mimickers, and can also be relevant for a more accurate modelling of the interior of neutron stars.
The Event Horizon Telescope is a millimeter VLBI array that aims to take the first pictures of the black holes in the center of the Milky Way and of the M87 galaxy, with horizon scale resolution. Measurements of the shape and size of the shadows cast by the black holes on the surrounding emission can test the cosmic censorship conjecture and the no-hair theorem and may find evidence for classical effects of the quantum structure of black holes. Observations of coherent structures in the accretion flows may lead to accurate measurements of the spins of the black holes and of other properties of their spacetimes. For Sgr A*, the black hole in the center of the Milky Way, measurements of the precession of stellar orbits and timing monitoring of orbiting pulsars offer complementary avenues to the gravitational tests with the Event Horizon Telescope.
117 - Angelo Tartaglia 2015
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Rela tivity will be described. Then, the present situation will be reviewed presenting a number of examples. The opportunities given by astrophysical and astrometric observations will be shortly discussed. Coming to terrestrial experiments the attention will be specially focused on ringlasers and a dedicated experiment for the Gran Sasso Laboratories, named by the acronym GINGER, will be presented. Mention will also be made of alternatives to the use of light, such as particle beams and superfluid rings.
121 - Zack Carson , Kent Yagi 2020
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitat ional waves. In particular, we focus on three theory-agnostic tests (parameterized tests, inspiral-merger-ringdown consistency tests, and gravitational-wave propagation tests) and explain how one can apply such tests to example modified theories of gravity. We conclude by giving some open questions that need to be resolved to carry out more accurate tests of gravity with gravitational waves.
The apparent sizes and brightnesses of galaxies are correlated in a dipolar pattern around matter overdensities in redshift space, appearing larger on their near side and smaller on their far side. The opposite effect occurs for galaxies around an un derdense region. These patterns of apparent magnification induce dipole and higher multipole terms in the cross-correlation of galaxy number density fluctuations with galaxy size/brightness (which is sensitive to the convergence field). This provides a means of directly measuring peculiar velocity statistics at low and intermediate redshift, with several advantages for performing cosmological tests of GR. In particular, it does not depend on empirically-calibrated scaling relations like the Tully-Fisher and Fundamental Plane methods. We show that the next generation of spectroscopic galaxy redshift surveys will be able to measure the Doppler magnification effect with sufficient signal-to-noise to test GR on large scales. We illustrate this with forecasts for the constraints that can be achieved on parametrised deviations from GR for forthcoming low-redshift galaxy surveys with DESI and SKA2. Although the cross-correlation statistic considered has a lower signal to noise than RSD, it will be a useful probe of GR since it is sensitive to different systematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا