ﻻ يوجد ملخص باللغة العربية
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Relativity will be described. Then, the present situation will be reviewed presenting a number of examples. The opportunities given by astrophysical and astrometric observations will be shortly discussed. Coming to terrestrial experiments the attention will be specially focused on ringlasers and a dedicated experiment for the Gran Sasso Laboratories, named by the acronym GINGER, will be presented. Mention will also be made of alternatives to the use of light, such as particle beams and superfluid rings.
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitat
The paper discusses the optimal conguration of one or more ring lasers to be used for measuring the general relativistic effects of the rotation of the earth, as manifested on the surface of the planet. The analysis is focused on devices having their
Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a grav
The observations of gravitational-wave signals from astrophysical sources such as binary inspirals will be used to test General Relativity for self consistency and against alternative theories of gravity. I describe a simple formula that can be used
One century after its formulation, Einsteins general relativity has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and