ترغب بنشر مسار تعليمي؟ اضغط هنا

Buddy Compression: Enabling Larger Memory for Deep Learning and HPC Workloads on GPUs

87   0   0.0 ( 0 )
 نشر من قبل Esha Choukse
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

GPUs offer orders-of-magnitude higher memory bandwidth than traditional CPU-only systems. However, GPU device memory tends to be relatively small and the memory capacity can not be increased by the user. This paper describes Buddy Compression, a scheme to increase both the effective GPU memory capacity and bandwidth while avoiding the downsides of conventional memory-expanding strategies. Buddy Compression compresses GPU memory, splitting each compressed memory entry between high-speed device memory and a slower-but-larger disaggregated memory pool (or system memory). Highly-compressible memory entries can thus be accessed completely from device memory, while incompressible entries source their data using both on and off-device accesses. Increasing the effective GPU memory capacity enables us to run larger-memory-footprint HPC workloads and larger batch-sizes or models for DL workloads than current memory capacities would allow. We show that our solution achieves an average compression ratio of 2.2x on HPC workloads and 1.5x on DL workloads, with a slowdown of just 1~2%.



قيم البحث

اقرأ أيضاً

GPGPU architectures have become established as the dominant parallelization and performance platform achieving exceptional popularization and empowering domains such as regular algebra, machine learning, image detection and self-driving cars. However , irregular applications struggle to fully realize GPGPU performance as a result of control flow divergence and memory divergence due to irregular memory access patterns. To ameliorate these issues, programmers are obligated to carefully consider architecture features and devote significant efforts to modify the algorithms with complex optimization techniques, which shift programmers priorities yet struggle to quell the shortcomings. We show that in graph-based GPGPU irregular applications these inefficiencies prevail, yet we find that it is possible to relax the strict relationship between thread and data processed to empower new optimizations. Based on this key idea, we propose the Irregular accesses Reorder Unit (IRU), a novel hardware extension tightly integrated in the GPGPU pipeline. The IRU reorders data processed by the threads on irregular accesses which significantly improves memory coalescing, and allows increased performance and energy efficiency. Additionally, the IRU is capable of filtering and merging duplicated irregular access which further improves graph-based irregular applications. Programmers can easily utilize the IRU with a simple API, or compiler optimized generated code with the extended ISA instructions provided. We evaluate our proposal for state-of-the-art graph-based algorithms and a wide selection of applications. Results show that the IRU achieves a memory coalescing improvement of 1.32x and a 46% reduction in the overall traffic in the memory hierarchy, which results in 1.33x and 13% improvement in performance and energy savings respectively, while incurring in a small 5.6% area overhead.
Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation and more energy consumption, hindering the deployment of GAN-based SR into resource-constricted mobile devices. In this paper, we propose a novel compression framework textbf{M}ulti-scale textbf{F}eature textbf{A}ggregation Net based textbf{GAN} (MFAGAN) for reducing the memory access cost of the generator. First, to overcome the memory explosion of dense connections, we utilize a memory-efficient multi-scale feature aggregation net as the generator. Second, for faster and more stable training, our method introduces the PatchGAN discriminator. Third, to balance the student discriminator and the compressed generator, we distill both the generator and the discriminator. Finally, we perform a hardware-aware neural architecture search (NAS) to find a specialized SubGenerator for the target mobile phone. Benefiting from these improvements, the proposed MFAGAN achieves up to textbf{8.3}$times$ memory saving and textbf{42.9}$times$ computation reduction, with only minor visual quality degradation, compared with ESRGAN. Empirical studies also show $sim$textbf{70} milliseconds latency on Qualcomm Snapdragon 865 chipset.
Sparse matrices are the key ingredients of several application domains, from scientific computation to machine learning. The primary challenge with sparse matrices has been efficiently storing and transferring data, for which many sparse formats have been proposed to significantly eliminate zero entries. Such formats, essentially designed to optimize memory footprint, may not be as successful in performing faster processing. In other words, although they allow faster data transfer and improve memory bandwidth utilization -- the classic challenge of sparse problems -- their decompression mechanism can potentially create a computation bottleneck. Not only is this challenge not resolved, but also it becomes more serious with the advent of domain-specific architectures (DSAs), as they intend to more aggressively improve performance. The performance implications of using various formats along with DSAs, however, has not been extensively studied by prior work. To fill this gap of knowledge, we characterize the impact of using seven frequently used sparse formats on performance, based on a DSA for sparse matrix-vector multiplication (SpMV), implemented on an FPGA using high-level synthesis (HLS) tools, a growing and popular method for developing DSAs. Seeking a fair comparison, we tailor and optimize the HLS implementation of decompression for each format. We thoroughly explore diverse metrics, including decompression overhead, latency, balance ratio, throughput, memory bandwidth utilization, resource utilization, and power consumption, on a variety of real-world and synthetic sparse workloads.
Many HPC applications suffer from a bottleneck in the shared caches, instruction execution units, I/O or memory bandwidth, even though the remaining resources may be underutilized. It is hard for developers and runtime systems to ensure that all crit ical resources are fully exploited by a single application, so an attractive technique for increasing HPC system utilization is to colocate multiple applications on the same server. When applications share critical resources, however, contention on shared resources may lead to reduced application performance. In this paper, we show that server efficiency can be improved by first modeling the expected performance degradation of colocated applications based on measured hardware performance counters, and then exploiting the model to determine an optimized mix of colocated applications. This paper presents a new intelligent resource manager and makes the following contributions: (1) a new machine learning model to predict the performance degradation of colocated applications based on hardware counters and (2) an intelligent scheduling scheme deployed on an existing resource manager to enable application co-scheduling with minimum performance degradation. Our results show that our approach achieves performance improvements of 7% (avg) and 12% (max) compared to the standard policy commonly used by existing job managers.
The exponential growth in use of large deep neural networks has accelerated the need for training these deep neural networks in hours or even minutes. This can only be achieved through scalable and efficient distributed training, since a single node/ card cannot satisfy the compute, memory, and I/O requirements of todays state-of-the-art deep neural networks. However, scaling synchronous Stochastic Gradient Descent (SGD) is still a challenging problem and requires continued research/development. This entails innovations spanning algorithms, frameworks, communication libraries, and system design. In this paper, we describe the philosophy, design, and implementation of Intel Machine Learning Scalability Library (MLSL) and present proof-points demonstrating scaling DL training on 100s to 1000s of nodes across Cloud and HPC systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا