ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence and Non-existence of Solutions to the Coboundary Equation for Measure Preserving Systems

214   0   0.0 ( 0 )
 نشر من قبل Terrence Adams
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(X,mathcal{B},mu)$ be a standard probability space. We give new fundamental results determining solutions to the coboundary equation: begin{eqnarray*} f = g - g circ T end{eqnarray*} where $f in L^p$ and $T$ is ergodic invertible measure preserving on $(X, mathcal{B}, mu )$. We extend previous results by showing for any measurable $f$ that is non-zero on a set of positive measure, the class of measure preserving $T$ with a measurable solution $g$ is meager (including the case where $int_X f dmu = 0$). From this fact, a natural question arises: given $f$, does there always exist a solution pair $T$ and $g$? In regards to this question, our main results are: (i) Given measurable $f$, there exists an ergodic invertible measure preserving transformation $T$ and measurable function $g$ such that $f(x) = g(x) - g(Tx)$ for a.e. $xin X$, if and only if $int_{f > 0} f dmu = - int_{f < 0} f dmu$ (whether finite or $infty$). (ii) Given mean-zero $f in L^p$ for $p geq 1$, there exists an ergodic invertible measure preserving $T$ and $g in L^{p-1}$ such that $f(x) = g(x) - g( Tx )$ for a.e. $x in X$. (iii) In some sense, the previous existence result is the best possible. For $p geq 1$, there exist mean-zero $f in L^p$ such that for any ergodic invertible measure preserving $T$ and any measurable $g$ such that $f(x) = g(x) - g(Tx)$ a.e., then $g otin L^q$ for $q > p - 1$. Also, we show this situation is generic for mean-zero $f in L^p$. Finally, it is shown that we cannot expect finite moments for solutions $g$, when $f in L^1$. In particular, given any $phi : mathbb{R} to mathbb{R}$ such that $lim_{xto infty} phi (x) = infty$, there exist mean-zero $f in L^1$ such that for any solutions $T$ and $g$, the transfer function $g$ satisfies: begin{eqnarray*} int_{X} phi big( | g(x) | big) dmu = infty. end{eqnarray*}



قيم البحث

اقرأ أيضاً

Existence and spatio-temporal symmetric patterns of periodic solutions to second order reversible equivariant non-autonomous periodic systems with multiple delays are studied under the Hartman-Nagumo growth conditions. The method is based on using th e Brouwer $D_1 times mathbb Z_2times Gamma$-equivariant degree theory, where $D_1$ is related to the reversing symmetry, $mathbb Z_2$ is related to the oddness of the right-hand-side and $Gamma$ reflects the symmetric character of the coupling in the corresponding network. Abstract results are supported by a concrete example with $Gamma = D_n$ -- the dihedral group of order $2n$.
A mathematical model for collision-induced breakage is considered. Existence of weak solutions to the continuous nonlinear collision-induced breakage equation is shown for a large class of unbounded collision kernels and daughter distribution functio ns, assuming the collision kernel $K$ to be given by $K(x,y)= x^{alpha} y^{beta} + x^{beta} y^{alpha}$ with $alpha le beta le 1$. When $alpha + beta in [1,2]$, it is shown that there exists at least one weak mass-conserving solution for all times. In contrast, when $alpha + beta in [0,1)$ and $alpha ge 0$, global mass-conserving weak solutions do not exist, though such solutions are constructed on a finite time interval depending on the initial condition. The question of uniqueness is also considered. Finally, for $alpha <0$ and a specific daughter distribution function, the non-existence of mass-conserving solutions is also established.
245 - Hui Wei , Shuguan Ji 2018
This paper is concerned with the periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficient. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with saddle point reduction technique, we obtain the existence of at least three periodic solutions whenever the period is a rational multiple of the length of the spatial interval. Our method is based on a delicate analysis for the asymptotic character of the spectrum of the wave operator with $x$-dependent coefficients, and the spectral properties play an essential role in the proof.
170 - Hui Wei , Shuguan Ji 2017
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three peri odic solutions for arbitrary space dimension $n$. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.
127 - Xiaoyu Zeng , Yimin Zhang 2017
For a class of Kirchhoff functional, we first give a complete classification with respect to the exponent $p$ for its $L^2$-normalized critical points, and show that the minimizer of the functional, if exists, is unique up to translations. Secondly, we search for the mountain pass type critical point for the functional on the $L^2$-normalized manifold, and also prove that this type critical point is unique up to translations. Our proof relies only on some simple energy estimates and avoids using the concentration-compactness principles. These conclusions extend some known results in previous papers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا