We study geodesics in the Schwarzschild space-time affected by an uncertainty in the mass parameter described by a Gaussian distribution. This study could serve as a first attempt at investigating possible quantum effects of black hole space-times on the motion of matter in their surroundings as well as the role of uncertainties in the measurement of the black hole parameters.
Starting from the infinite set of possible master equations for the perturbations of Schwarzschild black holes, with master functions linear in the metric perturbations and their first-order derivatives, we show that of all them are connected via Dar
boux transformations. These transformations preserve physical quantities like the quasinormal mode frequencies and the infinite hierarchy of Korteweg-de Vries conserved quantities, revealing a new hidden symmetry in the description of the perturbations of Schwarzschild black holes: Darboux covariance.
Recently it has been proposed that a strange logarithmic expression for the so-called Barbero-Immirzi parameter, which is one of the ingredients that are necessary for Loop Quantum Gravity (LQG) to predict the correct black hole entropy, is not anoth
er sign of the inconsistency of this approach to quantization of General Relativity, but is rather a meaningful number that can be independently justified in classical GR. The alternative justification involves the knowledge of the real part of the frequencies of black hole quasinormal states whose imaginary part blows up. In this paper we present an analytical derivation of the states with frequencies approaching a large imaginary number plus ln 3 / 8 pi M; this constant has been only known numerically so far. We discuss the structure of the quasinormal states for perturbations of various spin. Possible implications of these states for thermal physics of black holes and quantum gravity are mentioned and interpreted in a new way. A general conjecture about the asymptotic states is stated. Although our main result lends some credibility to LQG, we also review some of its claims in a critical fashion and speculate about its possible future relevance for Quantum Gravity.
In this letter, we first redefine our formalism of the thermodynamic geometry introduced in [1,2] by changing coordinates of the thermodynamic space by means of Jacobian matrices. We then show that the geometrothermodynamics (GTD) is conformally rela
ted to this new formalism of the thermodynamic geometry. This conformal transformation is singular at unphysical points were generated in GTD metric. Therefore, working with our metric neatly excludes all unphysical points without imposing any constraints.
We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a massless scalar field and extend the results in our previous rapid communication arXiv:2006.08313 to more general schemes. It is shown that the spectrum o
f the black hole mass is discrete and does not contain zero. This indicates the existence of a black hole remnant after Hawking evaporation due to loop quantum gravity effects. Besides to show the existence of a stable black hole remnant in the vacuum case, the quantum dynamics for the non-vacuum case is also solved and compared with the effective one.
We reconsider the study of the interior of the Schwarzschild black hole now including inverse triad quantum corrections within loop quantization. We derive these corrections and show that they are are related to two parameters $delta_b, delta_c$ asso
ciated to the minimum length in the radial and angular directions, that enter Thiemanns trick for quantum inverse triads. Introduction of such corrections may lead to non-invariance of physical results under rescaling of the fiducial volume needed to compute the dynamics, due to noncompact topology of the model. So, we put forward two prescriptions to resolve this issue. These prescriptions amount to interchange $delta_b, delta_c$ in classical computations in Thiemanns trick. By implementing the inverse triad corrections we found, previous results such as singularity resolution and black-to-white hole bounce hold with different values for the minimum radius-at-bounce, and the mass of the white hole.