ترغب بنشر مسار تعليمي؟ اضغط هنا

Loop quantum deparametrized Schwarzschild interior and discrete black hole mass

69   0   0.0 ( 0 )
 نشر من قبل Cong Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a massless scalar field and extend the results in our previous rapid communication arXiv:2006.08313 to more general schemes. It is shown that the spectrum of the black hole mass is discrete and does not contain zero. This indicates the existence of a black hole remnant after Hawking evaporation due to loop quantum gravity effects. Besides to show the existence of a stable black hole remnant in the vacuum case, the quantum dynamics for the non-vacuum case is also solved and compared with the effective one.



قيم البحث

اقرأ أيضاً

We reconsider the study of the interior of the Schwarzschild black hole now including inverse triad quantum corrections within loop quantization. We derive these corrections and show that they are are related to two parameters $delta_b, delta_c$ asso ciated to the minimum length in the radial and angular directions, that enter Thiemanns trick for quantum inverse triads. Introduction of such corrections may lead to non-invariance of physical results under rescaling of the fiducial volume needed to compute the dynamics, due to noncompact topology of the model. So, we put forward two prescriptions to resolve this issue. These prescriptions amount to interchange $delta_b, delta_c$ in classical computations in Thiemanns trick. By implementing the inverse triad corrections we found, previous results such as singularity resolution and black-to-white hole bounce hold with different values for the minimum radius-at-bounce, and the mass of the white hole.
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent fu nctions expanded around the effective causal radius $r_*$. From the solutions it is obtained that the uncertainty principle is valid for each energy level of space-time, in the form: $E_n, r_{*,n}=hbar/2$, and the charged mass is discretized and distributed in a finite number of states. The classical RNBH entropy is recovered as the limit case where the number of states is very large, and the RNBH quantum temperature depends on the number of states in the interior of the RNBH. This temperature, depending of the number of states of the RNBH, is related with the Bekeinstein-Hawking (BH) temperature: $T_{BH} leq T_{N} < 2,T_{BH}$.
The spacetime in the interior of a black hole can be described by an homogeneous line element, for which the Einstein--Hilbert action reduces to a one-dimensional mechanical model. We have shown in [SciPost Phys. 10, 022 (2021), [2010.07059]] that th is model exhibits a symmetry under the $(2+1)$-dimensional Poincare group. Here we explain how this can be understood as a broken infinite-dimensional BMS$_3$ symmetry. This is done by reinterpreting the action for the model as a geometric action for BMS$_3$, where the configuration space variables are elements of the algebra $mathfrak{bms}_3$ and the equations of motion transform as coadjoint vectors. The Poincare subgroup then arises as the stabilizer of the vacuum orbit. This symmetry breaking is analogous to what happens with the Schwarzian action in AdS$_2$ JT gravity, although in the present case there is no direct interpretation in terms of boundary symmetries. This observation, together with the fact that other lower-dimensional gravitational models (such as the BTZ black hole) possess the same broken BMS$_3$ symmetries, provides yet another illustration of the ubiquitous role played by this group.
In this paper we have implemented quantum corrections for the Schwarzschild black hole metric using the generalized uncertainty principle (GUP) in order to investigate the scattering process. We mainly compute, at the low energy limit, the differenti al scattering and absorption cross section by using the partial wave method. We determine the phase shift analytically and verify that these quantities are modified by the GUP. We found that due to the quantum corrections from the GUP the absorption is not zero as the mass parameter goes to zero. A numerical analysis has also been performed for arbitrary frequencies.
The analysis of gravitino fields in curved spacetimes is usually carried out using the Newman-Penrose formalism. In this paper we consider a more direct approach with eigenspinor-vectors on spheres, to separate out the angular parts of the fields in a Schwarzschild background. The radial equations of the corresponding gauge invariant variable obtained are shown to be the same as in the Newman-Penrose formalism. These equations are then applied to the evaluation of the quasinormal mode frequencies, as well as the absorption probabilities of the gravitino field scattering in this background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا