ﻻ يوجد ملخص باللغة العربية
The dynamics of string junctions and their influence on the evolution of cosmic superstring networks are studied in full detail. We review kinematic constraints for colliding strings in a Friedmann-Lema^itre-Robertson-Walker background and obtain the average distribution of possible string configurations after string collisions. The study of small-scale structure enables us to investigate the average growth/reduction rate of string junctions for a given cosmic string network. Incorporating the averaged junction dynamics into the velocity-dependent one-scale model for multi-tension string networks, we improve the semi-analytic description and quantitative understanding of cosmic superstring network evolution.
We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorporate arbitrary currents and charges on cosmic string world
We apply a recently developed formalism to study the evolution of a current-carrying string network under the simple but generic assumption of a linear equation of state. We demonstrate that the existence of a scaling solution with non-trivial curren
We develop a parameter-free velocity-dependent one-scale model for the evolution of the characteristic length $L$ and root-mean-square velocity $sigma_v$ of standard domain wall networks in homogeneous and isotropic cosmologies. We compare the fricti
We report on an extensive study of the evolution of domain wall networks in Friedmann-Lema^{i}tre-Robertson-Walker universes by means of the largest currently available field-theory simulations. These simulations were done in $4096^3$ boxes and for a
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clus