ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of junctions and the multi-tension velocity-dependent one-scale model

102   0   0.0 ( 0 )
 نشر من قبل C. J. A. P. Martins
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of string junctions and their influence on the evolution of cosmic superstring networks are studied in full detail. We review kinematic constraints for colliding strings in a Friedmann-Lema^itre-Robertson-Walker background and obtain the average distribution of possible string configurations after string collisions. The study of small-scale structure enables us to investigate the average growth/reduction rate of string junctions for a given cosmic string network. Incorporating the averaged junction dynamics into the velocity-dependent one-scale model for multi-tension string networks, we improve the semi-analytic description and quantitative understanding of cosmic superstring network evolution.

قيم البحث

اقرأ أيضاً

We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorporate arbitrary currents and charges on cosmic string world sheets under two main assumptions, the validity of which we also discuss. We derive equations that describe the string network evolution in terms of four macroscopic parameters: the mean string separation (or alternatively the string correlation length) and the root mean square (RMS) velocity which are the cornerstones of the VOS model, together with parameters describing the averaged timelike and spacelike current contributions. We show that our extended description reproduces the particular cases of wiggly and chiral cosmic strings, previously studied in the literature. This VOS model enables investigation of the evolution and possible observational signatures of superconducting cosmic string networks for more general equations of state, and these opportunities will be exploited in a companion paper.
We apply a recently developed formalism to study the evolution of a current-carrying string network under the simple but generic assumption of a linear equation of state. We demonstrate that the existence of a scaling solution with non-trivial curren t depends on the expansion rate of the universe, the initial root mean square current on the string, and the available energy loss mechanisms. We find that the fast expansion rate after radiation-matter equality will tend to rapidly dilute any pre-existing current and the network will evolve towards the standard Nambu-Goto scaling solution (provided there are no external current-generating mechanisms). During the radiation era, current growth is possible provided the initial conditions for the network generate a relatively large current and/or there is significant early string damping. The network can then achieve scaling with a stable non-trivial current, assuming large currents will be regulated by some leakage mechanism. The potential existence of current-carrying string networks in the radiation era, unlike the standard Nambu-Goto networks expected in the matter era, could have interesting phenomenological consequences.
151 - P. P. Avelino 2019
We develop a parameter-free velocity-dependent one-scale model for the evolution of the characteristic length $L$ and root-mean-square velocity $sigma_v$ of standard domain wall networks in homogeneous and isotropic cosmologies. We compare the fricti onless scaling solutions predicted by our model, in the context of cosmological models having a power law evolution of the scale factor $a$ as a function of the cosmic time $t$ ($a propto t^lambda$, $0< lambda < 1$), with the corresponding results obtained using field theory numerical simulations. We show that they agree well (within a few $%$) for root-mean-square velocities $sigma_v$ smaller than $0.2 , c$ ($lambda ge 0.9$), where $c$ is the speed of light in vacuum, but significant discrepancies occur for larger values of $sigma_v$ (smaller values of $lambda$). We identify problems with the determination of $L$ and $sigma_v$ from numerical field theory simulations which might potentially be responsible for these discrepancies.
We report on an extensive study of the evolution of domain wall networks in Friedmann-Lema^{i}tre-Robertson-Walker universes by means of the largest currently available field-theory simulations. These simulations were done in $4096^3$ boxes and for a range of different fixed expansion rates, as well as for the transition between the radiation and matter eras. A detailed comparison with the velocity-dependent one-scale (VOS) model shows that this cannot accurately reproduce the results of the entire range of simulated regimes if one assumes that the phenomenological energy loss and momentum parameters are constants. We therefore discuss how a more accurate modeling of these parameters can be done, specifically by introducing an additional mechanism of energy loss (scalar radiation, which is particularly relevant for regimes with relatively little damping) and a modified momentum parameter which is a function of velocity (in analogy to what was previously done for cosmic strings). We finally show that this extended model, appropriately calibrated, provides an accurate fit to our simulations.
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clus tering amplitude $S_8$. The high-redshift data, from the cosmic microwave background (CMB), crucially relies on recombination physics for its interpretation. Here we study how small-scale baryon inhomogeneities (i.e., clumping) can affect recombination and consider whether they can relieve both the $H_0$ and $S_8$ tensions. Such small-scale clumping, which may be caused by primordial magnetic fields or baryon isocurvature below kpc scales, enhances the recombination rate even when averaged over larger scales, shifting recombination to earlier times. We introduce a flexible clumping model, parametrized via three spatial zones with free densities and volume fractions, and use it to study the impact of clumping on CMB observables. We find that increasing $H_0$ decreases both $Omega_m$ and $S_8$, which alleviates the $S_8$ tension. On the other hand, the shift in $Omega_m$ is disfavored by the low-$z$ baryon-acoustic-oscillations measurements. We find that the clumping parameters that can change the CMB sound horizon enough to explain the $H_0$ tension also alter the damping tail, so they are disfavored by current {it Planck} 2018 data. We test how the CMB damping-tail information rules out changes to recombination by first removing $ell>1000$ multipoles in {it Planck} data, where we find that clumping could resolve the $H_0$ tension. Furthermore, we make predictions for future CMB experiments, as their improved damping-tail precision can better constrain departures from standard recombination. Both the {it Simons Observatory} and CMB-S4 will provide decisive evidence for or against clumping as a resolution to the $H_0$ tension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا