ﻻ يوجد ملخص باللغة العربية
We report on an extensive study of the evolution of domain wall networks in Friedmann-Lema^{i}tre-Robertson-Walker universes by means of the largest currently available field-theory simulations. These simulations were done in $4096^3$ boxes and for a range of different fixed expansion rates, as well as for the transition between the radiation and matter eras. A detailed comparison with the velocity-dependent one-scale (VOS) model shows that this cannot accurately reproduce the results of the entire range of simulated regimes if one assumes that the phenomenological energy loss and momentum parameters are constants. We therefore discuss how a more accurate modeling of these parameters can be done, specifically by introducing an additional mechanism of energy loss (scalar radiation, which is particularly relevant for regimes with relatively little damping) and a modified momentum parameter which is a function of velocity (in analogy to what was previously done for cosmic strings). We finally show that this extended model, appropriately calibrated, provides an accurate fit to our simulations.
We develop a parameter-free velocity-dependent one-scale model for the evolution of the characteristic length $L$ and root-mean-square velocity $sigma_v$ of standard domain wall networks in homogeneous and isotropic cosmologies. We compare the fricti
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete $Z_3$-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesi
In this contribution, we discuss the cosmological scenario where unstable domain walls are formed in the early universe and their late-time annihilation produces a significant amount of gravitational waves. After describing cosmological constraints o
We apply a recently developed formalism to study the evolution of a current-carrying string network under the simple but generic assumption of a linear equation of state. We demonstrate that the existence of a scaling solution with non-trivial curren
We develop an analytic model to quantitatively describe the evolution of superconducting cosmic string networks. Specifically, we extend the velocity-dependent one-scale (VOS) model to incorporate arbitrary currents and charges on cosmic string world