ﻻ يوجد ملخص باللغة العربية
Using the technique of point source atom interferometry, we characterize the sensitivity of a multi-axis gyroscope based on free-space Raman interrogation of a single source of cold atoms in a glass vacuum cell. The instrument simultaneously measures the acceleration in the direction of the Raman laser beams and the component of the rotation vector in the plane perpendicular to that direction. We characterize the sensitivities for the magnitude and direction of the rotation vector measurement, which are 0.033 $^{circ}/mathrm{s}$ and 0.27 $^{circ}$ with one second averaging time, respectively. The sensitivity could be improved by increasing the Raman interrogation time, allowing the cold-atom cloud to expand further, correcting the fluctuations in the initial cloud shape, and reducing sources of technical noise. The unique ability of the PSI technique to measure the rotation vector in a plane may permit applications of atom interferometry such as tracking the precession of a rotation vector and gyrocompassing.
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li
We present a compact and transportable inertial sensor for precision sensing of rotations and accelerations. The sensor consists of a dual Mach-Zehnder-type atom interferometer operated with laser-cooled $^{87}$Rb. Raman processes are employed to coh
The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. We describe several component technologies and a laser system architecture to
We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravi
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently