ﻻ يوجد ملخص باللغة العربية
The wiring diagram of the mouse brain has recently been mapped at a mesoscopic scale in the Allen Mouse Brain Connectivity Atlas. Axonal projections from brain regions were traced using green fluoresent proteins. The resulting data were registered to a common three-dimensional reference space. They yielded a matrix of connection strengths between 213 brain regions. Global features such as closed loops formed by connections of similar intensity can be inferred using tools from persistent homology. We map the wiring diagram of the mouse brain to a simplicial complex (filtered by connection strengths). We work out generators of the first homology group. Some regions, including nucleus accumbens, are connected to the entire brain by loops, whereas no region has non-zero connection strength to all brain regions. Thousands of loops go through the isocortex, the striatum and the thalamus. On the other hand, medulla is the only major brain compartment that contains more than 100 loops.
The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made availab
During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states propagate across the cortex. We address the mechanism of how SOs emerge and can recruit large parts of the brain using a whol
Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data we tested the power of three models to predict connections of
Network neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illne
A recent publication provides the network graph for a neocortical microcircuit comprising 8 million connections between 31,000 neurons (H. Markram, et al., Reconstruction and simulation of neocortical microcircuitry, Cell, 163 (2015) no. 2, 456-492).