ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological analysis of the connectome of digital reconstructions of neural microcircuits

69   0   0.0 ( 0 )
 نشر من قبل Ran Levi
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent publication provides the network graph for a neocortical microcircuit comprising 8 million connections between 31,000 neurons (H. Markram, et al., Reconstruction and simulation of neocortical microcircuitry, Cell, 163 (2015) no. 2, 456-492). Since traditional graph-theoretical methods may not be sufficient to understand the immense complexity of such a biological network, we explored whether methods from algebraic topology could provide a new perspective on its structural and functional organization. Structural topological analysis revealed that directed graphs representing connectivity among neurons in the microcircuit deviated significantly from different varieties of randomized graph. In particular, the directed graphs contained in the order of $10^7$ simplices {DH} groups of neurons with all-to-all directed connectivity. Some of these simplices contained up to 8 neurons, making them the most extreme neuronal clustering motif ever reported. Functional topological analysis of simulated neuronal activity in the microcircuit revealed novel spatio-temporal metrics that provide an effective classification of functional responses to qualitatively different stimuli. This study represents the first algebraic topological analysis of structural connectomics and connectomics-based spatio-temporal activity in a biologically realistic neural microcircuit. The methods used in the study show promise for more general applications in network science.



قيم البحث

اقرأ أيضاً

151 - Pascal Grange 2018
The wiring diagram of the mouse brain has recently been mapped at a mesoscopic scale in the Allen Mouse Brain Connectivity Atlas. Axonal projections from brain regions were traced using green fluoresent proteins. The resulting data were registered to a common three-dimensional reference space. They yielded a matrix of connection strengths between 213 brain regions. Global features such as closed loops formed by connections of similar intensity can be inferred using tools from persistent homology. We map the wiring diagram of the mouse brain to a simplicial complex (filtered by connection strengths). We work out generators of the first homology group. Some regions, including nucleus accumbens, are connected to the entire brain by loops, whereas no region has non-zero connection strength to all brain regions. Thousands of loops go through the isocortex, the striatum and the thalamus. On the other hand, medulla is the only major brain compartment that contains more than 100 loops.
Anatomical connectivity imposes strong constraints on brain function, but there is no general agreement about principles that govern its organization. Based on extensive quantitative data we tested the power of three models to predict connections of the primate cerebral cortex: architectonic similarity (structural model), spatial proximity (distance model) and thickness similarity (thickness model). Architectonic similarity showed the strongest and most consistent influence on connection features. This parameter was strongly associated with the presence or absence of inter-areal connections and when integrated with spatial distance, the model allowed predicting the existence of projections with very high accuracy. Moreover, architectonic similarity was strongly related to the laminar pattern of projections origins, and the absolute number of cortical connections of an area. By contrast, cortical thickness similarity and distance were not systematically related to connection features. These findings suggest that cortical architecture provides a general organizing principle for connections in the primate brain.
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-deliver y agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP (kink) was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.
The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made availab le by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to $simeq 10^6$ nodes and $simeq 10^8$ edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension $D$ and the small-world coefficient $sigma$ of these networks. While $sigma$ suggests a small-world topology, we found that $D < 4$ showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.
The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constit ute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galapagos Islands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا