ترغب بنشر مسار تعليمي؟ اضغط هنا

Vorticity induced negative nonlocal resistance in viscous two-dimensional electron system

80   0   0.0 ( 0 )
 نشر من قبل Gennady Gusev M
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report non-local electrical measurements in a mesoscopic size two-dimensional (2D) electron gas in a GaAs quantum well in a hydrodynamic regime. Viscous electric flow is expected to be dominant when electron-electron collisions occur more often than the impurity or phonon scattering events. We observe a negative nonlocal resistance and attribute it to the formation of whirlpools in the electron flow. We use the different nonlocal transport geometries and compare the results with a theory demonstrating the significance of hydrodynamics in mesoscopic samples.

قيم البحث

اقرأ أيضاً

92 - P. S. Alekseev 2016
At low temperatures, in very clean two-dimensional (2D) samples the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a vi scous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature- and size dependent. Our analysis demonstrates that the viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultra-high-mobility GaAs quantum wells. We conclude that 2D electrons in that structures in moderate magnetic fields should be treated as a viscous fluid.
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen temperature. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We find that doped graphene exhibits an anomalous (negative) voltage drop near current injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphenes electron liquid is found to be ~0.1 m$^2$ /s, an order of magnitude larger than that of honey, in agreement with many-body theory. Our work shows a possibility to study electron hydrodynamics using high quality graphene.
We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magne tic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.
We present a theory of the phonon-assisted nonlinear dc transport of 2D electrons in high Landau levels. The nonlinear dissipative resistivity displays quantum magneto-oscillations governed by two parameters which are proportional to the Hall drift v elocity $v_H$ of electrons in electric field and the speed of sound $s$. In the subsonic regime, $v_H<s$, the theory quantitatively reproduces the oscillation pattern observed in recent experiments. We also find the $pi/2$ phase change of oscillations across the sound barrier $v_H=s$. In the supersonic regime, $v_H>s$, the amplitude of oscillations saturates with lowering temperature, while the subsonic region displays exponential suppression of the phonon-assisted oscillations with temperature.
83 - E. Nakhmedov , O. Alekperov , 2011
Effects of the spin-orbit interactions on the energy spectrum, Fermi surface and spin dynamics are studied in structural- and bulk-inversion asymmetric quasi-two-dimensional structures with a finite thickness in the presence of a parabolic transverse confining potential. One-particle quantum mechanical problem in the presence of an in-plane magnetic field is solved numerically exact. Interplay of the spin-orbit interactions, orbital- and Zeeman-effects of the in-plane magnetic field yields a multi-valley subband structure, typical for realization of the Gunn effect. A possible Gunn-effect-mediated spin accumulation is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا