ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-orbit interactions mediated negative differential resistance in a quasi-two-dimensional electron gas with finite thickness

135   0   0.0 ( 0 )
 نشر من قبل Enver Nakhmedov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of the spin-orbit interactions on the energy spectrum, Fermi surface and spin dynamics are studied in structural- and bulk-inversion asymmetric quasi-two-dimensional structures with a finite thickness in the presence of a parabolic transverse confining potential. One-particle quantum mechanical problem in the presence of an in-plane magnetic field is solved numerically exact. Interplay of the spin-orbit interactions, orbital- and Zeeman-effects of the in-plane magnetic field yields a multi-valley subband structure, typical for realization of the Gunn effect. A possible Gunn-effect-mediated spin accumulation is discussed.



قيم البحث

اقرأ أيضاً

The Wigner-crystal phase of two-dimensional electrons interacting via the Coulomb repulsion and subject to a strong Rashba spin-orbit coupling is investigated. For low enough electronic densities the spin-orbit band splitting can be larger than the z ero-point energy of the lattice vibrations. Then the degeneracy of the lower subband results in a spontaneous symmetry breaking of the vibrational ground state. The $60^{circ}-$rotational symmetry of the triangular (spin-orbit coupling free) structure is lost, and the unit cell of the new lattice contains two electrons. Breaking the rotational symmetry also leads to a (slight) squeezing of the underlying triangular lattice.
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa tions capture a number of interrelated effects including spin accumulation and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be used under very general circumstances to model transport experiments in 2DEG systems that involve either electrical or optical spin injection. We comment on the relationship between these equations and the exact spin and charge density operator equations of motion. As an example of the application of our equations, we consider a simple electrical spin injection experiment and show that a voltage will develop between two ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative magnetization orientation of the contacts. This voltage is present even when the separation between the contacts is larger than the spin diffusion length.
Spin-orbit coupling induced anisotropies of plasmon dynamics are investigated in two-dimensional semiconductor structures. The interplay of the linear Bychkov-Rashba and Dresselhaus spin-orbit interactions drastically affects the plasmon spectrum: th e dynamical structure factor exhibits variations over several decades, prohibiting plasmon propagation in specific directions. While this plasmon filtering makes the presence of spin-orbit coupling in plasmon dynamics observable, it also offers a control tool for plasmonic devices. Remarkably, if the strengths of the two interactions are equal, not only the anisotropy, but all the traces of the linear spin-orbit coupling in the collective response disappear.
144 - M. Studer , S. Schon , K. Ensslin 2009
Using time-resolved Faraday rotation, the drift-induced spin-orbit Field of a two-dimensional electron gas in an InGaAs quantum well is measured. Including measurements of the electron mobility, the Dresselhaus and Rashba coefficients are determined as a function of temperature between 10 and 80 K. By comparing the relative size of these terms with a measured in-plane anisotropy of the spin dephasing rate, the Dyakonv-Perel contribution to spin dephasing is estimated. The measured dephasing rate is significantly larger than this, which can only partially be explained by an inhomogeneous g-factor.
The transport equations for a two-dimensional electron gas with spin-orbit interaction are presented. The distribution function is a 2x2-matrix in the spin space. Particle and energy conservation laws determine the expressions for the electric curren t and the energy flow. The derived transport equations are applied to the spin-splitting of a wave packed and to the calculation of the structure factor and the dynamic conductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا